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ABSTRACT

This paper focuses on better understanding design processes, specifically those used by mechanical engineering students at Montana State University. Data on design processes were collected from journals students kept as a part of their capstone design projects. The projects were characterized by time coding the entries in these journals using a 3x4 matrix of design variables. Process outcomes were then measured by a client satisfaction index and an assessment of the design quality by industry professionals. Data collected from 14 projects were then modeled using principal component analysis and artificial neural networks. A virtual design of experiment was then conducted to obtain estimates for design process factors that significantly affect the client satisfaction and design quality.

The results indicate that the effects of process variables on design outcome may not necessarily be in agreement with the popular representation of a “good” design process. We hypothesize that because student design engineers are novices and differ from professional industry designers, the education they presently receive may need to be modified and tailored in specific areas to advance their abilities as better designers.

INTRODUCTION

Design has traditionally been an important part of an engineer’s training. It also plays an integral part in any organization with innovation as a core consideration. The past several decades have seen increasing emphasis being placed on design as the focus of engineering curricula. Large engineering companies and accreditation agencies alike have taken an aggressive stand as to what they need and expect from engineering graduates. Unfortunately, design may also be one of the least understood fields in engineering education.

With an exponential growth design theory and methodology research, numerous models have been proposed to describe the engineering design process or aspects thereof.  However, few of these have been empirically validated and experimentally verified.  Those developed from empirical data tend to suffer from dissimilarity to design in practice (e.g., studies limited to short-term problems of limited scope in a laboratory setting) or a very small sample size (n = 1-2 in many cases).  Furthermore, few models explicitly consider student design processes relative to project outcomes.  This study attempts to further our understanding of design processes by gathering data from actual projects (one in which the participants have real stakes) in large enough sample sizes to enable statistical modeling that directly links design process to outcome. 

In academia, one of the principal objectives of capstone design courses is to incorporate a major design experience into the undergraduate curriculum. Because many students eventually work on design projects in industry, understanding their design processes becomes imperative to improving the courses, and more importantly the overall quality of work the engineers produce. 

In this study, we analyzed data collected from 14 student mechanical engineering design projects, relating design process variables to project outcomes using statistical techniques.  We wanted to better understand what process characteristics tend to be associated with good design outcomes.  Specifically, we characterized the relationship between 12 design process variables (resources spent on problem definition, idea generation, engineering analysis and design refinement activities at the concept, system or detail design levels) and project outcomes as measured by client satisfaction and design quality.  The key research questions addressed are:

1. What process variables are significantly associated with positive or negative project outcomes? 

2. What is the magnitude of effect associated with the significant variables? 

3. Which of these variables significantly increase or decrease the likelihood of success of the design project?

The next section provides a brief discussion of the methods used to study and characterize design processes in the past and their applicability in addressing our research objectives. Then we describe our data collection and modeling methods, followed by results, discussion, and conclusions.

BACKGROUND

A design process may be defined as the series of activities that take a design problem from an initial specification to a finished artifact that meets all the requirements of the specification (Johnson, 1996). In general, a design process can be broken down into a sequence of fundamental operations called tasks. A greater understanding and insight into these tasks and other factors, which can be correlated to success, enables us to closely represent the design process. As a result, the process of design has been studied for decades by many researchers from different perspectives and using different techniques. Many authors use flowchart representations that shows discrete tasks (or task outputs) connected by transition arcs. Individual elements within the models identify tasks, procedures, or results important to the completion of the design. The overall structure of the representation provides a qualitative definition of the design process. A brief review of the models and techniques used to characterize design processes is presented in the following paragraphs (see Finger and Dixon, 1989, for a more comprehensive taxonomy of design research models and techniques). 

Design research began in the 1960’s, with so-called “first-generation” models created by investigators trying to find generic optimization routines that could be applied to any type of problem (Birmingham, et al., 1997). In 1969, Simon (ref. Simon, 1992) suggested that satisficing might be a more appropriate approach, and over the next two decades, this idea appears in the “second-generation” models.  During this time, two streams developed in design research with engineering researchers favoring heavily sequential design models (e.g., Johnson, 1978; Drake, 1978) and architectural design researchers experimenting with more cyclical models. The architectural models also tended to include cognitive processes, while engineering models attempted to define the stages the design process.  “Third generation” models arrived after the 1980’s, combining these two viewpoints (Birmingham, et al., 1997).  Dym (1994), Pugh, (1990), Cross, (1989), Pahl & Bietz, (2001), Haik, (2003), and Ullman, (2003) are some examples of hybrid “third generation” models. 

What can be seen from the models is the trade-off between precision in task definition, and model stability with respect to sequence. Some of the earliest models (e.g., Drake, 1978) show very general steps like generate-conjecture-analyze, and simply say to repeat until done. Later models, like Ullman (2003), have a detailed sequence prescribing the order in which a designer accomplishes everything from forming the design team to retiring the final product. 

In addition to the above models, quantitative techniques have been proposed to model and analyze the sequence of design processes in complex design projects and handle the iterative sub-cycles that are commonly found in complex design projects. These techniques include Signal Flow Graphs (Isaksson, Keski –Seppälä and Eppinger, 2000; Eppinger, Nakula and Whitney, 1997) and Design Structure Matrix (Steward, 1981; Smith and Eppinger, 1997). 

Design models differ widely across authors, particularly in the names of activities and as tasks are specified in great detail.  But the models consistently identify very similar types of activities as central to design:  problem identification and definition, ideation, evaluation, and iteration as quintessential examples.  Furthermore, most models recognize that design projects transition through phases, or alternatively, that designers operate at different cognitive levels over the course of a design project.  Again, the phases or cognitive levels can differ widely and have different labels, but most models start with an early conceptual phase, conclude with a detail design phase, and connect the two with one or more intermediate phases. 

In our review of design texts, we were unable to identify any models that had been empirically validated or that had explicitly correlated design process to outcome.  Most authors seemed to be either expert designers writing from their work experience, or academics writing from their teaching experience.  In either case, the models purported have not been based on rigorous research.  Further, the models do not appear to be designed specifically for engineering students who can be accurately characterized as novice designers.  Should a process that is perhaps well-suited to expert designers be recommended for novice designers?
Our intention, then, was to devise a study that would explicitly relate process to outcome and empirically validate a general design process model derived from the literature.  We hoped to gain insight into how engineering educators can better prepare their students for professional design responsibilities.  The next section presents our approach.

RESEARCH METHOD

This study focused on the capstone mechanical engineering design projects completed between Spring 2001 and Fall 2002 semesters at Montana State University. ME 404, the mechanical engineering capstone design class, is a 4-credit one-semester course. Students are divided into teams of 2 - 4 with a faculty member as advisor. The projects are industry sponsored so each team must interact with their client/sponsor to define their needs, devise a solution to meet those needs, and deliver a product (set of engineering drawings and specifications, written report, oral report, and in many cases a hardware prototype) by semester’s end.

Data Collection: Process Variables

Researchers have used a number of techniques to collect data on design processes, including interviews (Johnson, 1996; Brockman, 1996), retrospective and depositional methods (Waldron and Waldron, 1992), protocol analysis (Ericsson and Simon, 1984; Atman, Bursic and Lozito, 1996) and process observation (Bucciarelli, 1994). However, for this study, a novel approach was needed to study design process in-situ, spread over 15 week time period (one semester), without a specified location or researcher intervention, while capturing exact details when and as they occur. 

Design journals kept by individual students provide an alternative and novel approach to data collection that fit our desire to study actual student processes. This data collection technique overcomes many of the drawbacks of other research methods.  Compared to interviews, retrospective, and depositional methods, the data is collected in real-time, but unlike observational approaches, our method does not require specially trained professionals. Like protocol analysis, the data can be readily quantified using a suitable coding scheme, but it requires little researcher intervention during data collection and therefore is a potentially more accurate representation of the actual design process.  It is also more feasible to collect a relatively large sample size compared to videotaping or other approaches because the quantity of data captured, while still large, is more manageable. 

Students were asked to keep individual design journals (notebooks) to document their work over the semester as a part of this project (Sobek, 2002b). Journals were periodically evaluated using a rubric to help encourage good record keeping, and students were given specific feedback on the expectations and quality of their journals. These journals constituted 15 % of the final course grade. At project completion, journals were collected and coded according to the scheme in Table 1, with times assigned according to the start / end times recorded.

Table 1: Coding Matrix

	Design Activities

	
	Concept (C)
	System (S)
	Detail (D)

	Problem Definition (PD)
	C/PD
	S/PD
	D/PD

	Idea Generation (IG)
	C/IG
	S/IG
	D/IG

	Engineering Analysis (EA)
	C/EA
	S/EA
	D/EA

	Design Refinement (DR)
	C/DR
	S/DR
	D/DR

	

	Non-Design Activities

	Project Management
	PM
	

	Report Writing
	RW
	

	Presentation Preparation
	PP
	


Each design related activity received two codes.  The first is level of abstraction where we identify three levels.  Concept design addresses a problem or sub-problem with preliminary ideas, strategies, and/or approaches.  Common concept design activities are identifying customer needs, establishing the design specifications, and generating and selecting concepts. System level design defines the needed subsystems, their configuration and their interfaces. Detail design activities focus on quantifying specific features required to realize a particular concept, for example defining part geometry, choosing materials, or assigning tolerances.

The coding scheme also delineates four categories of design activity. Problem definition (PD) implies gathering and synthesizing information to better understand a problem or design idea through activities such as: stating a problem, identifying deliverables, and researching existing technologies. Activities in idea generation (IG) are one in which teams explore qualitatively different approaches to recognized problems, such as brainstorming activities, listing of alternatives, and recording “breakthrough” ideas. Engineering analysis (EA) involves formal and informal evaluation of existing design/idea(s), e.g., mathematical modeling and decision matrices. Finally, design refinement (DR) activities include modifying or adding detail to existing designs or ideas, deciding parameter values, drawing completed sketches of a design, and creating engineering drawings using computer-aided design (CAD) software.

The coding scheme also designates codes for non-design activities associated with project management and project delivery so that every entry could be assigned a code.  Project management (PM) covers project planning and progress evaluation, including: scheduling, class meetings to discuss logistics and deadlines, identifying tasks, and reporting project status. The delivery category is for activities associated with interim and final report writing (RW) and final presentation preparation (PP). Even though these activities constitute approximately 50 % of the total project time, a separate analysis found no statistically significant association between time spent on PM, PP, and RW activities and the design outcomes (client satisfaction and design quality, explained below).  Thus, this study focuses only on the design activities described in the previous two paragraphs.

The process of journal coding proceeded in two stages. First, research assistants familiarized themselves with the projects by reading the final written reports, then coded data and captured times by walking through team members’ journals in lock step, considering all the members’ entries for a given day before moving to the next day. Simple rules were devised for allocating time, and resolving discrepancies among the different journal accounts.  The principal investigator then reviewed the coding as a crosscheck on accuracy and consistency. The disagreements were solved through discussion and the process continued until mutual agreement was reached. The time data on the various process variables was then aggregated for the project by combining individual journal data. To date, we have coded 14 design projects (approx. 60 journals). The time data on the 12 design variables (3 abstraction levels X 4 activity categories) on each of these projects served as the process/input data for the model constructed in this study (see Sobek, 2002a for more details). 

Data Collection: Outcomes Data

It seems fair to define a “good” design process as one that leads to a good outcome. Thus to determine the goodness of a design process we need a way to measure the goodness of the end product. For this study we developed two outcomes measures, client satisfaction and the quality of the final designed product. Consequently, two separate instruments, the Client Satisfaction Questionnaire (CSQ) and the Design Quality Rubric (DQR), were developed, validated and deployed for measuring the client satisfaction and the design quality index quantitatively. 

The CSQ was developed by the authors based partly on brainstorming and partly on the previously developed surveys (Brackin and Gibson, 2001& 2002; Lewis and Bonollo, 2002; Shelnutt, et al., 1997).  The final questionnaire was composed of 20 questions, of which six were used for the client satisfaction index of outcomes quality, as shown in Table 2. A five-point Likert scale is used for recording the responses.
Table 2: Client Satisfaction Metrics

	Metric
	No. Of Measures 
	Measures
	Cronbach’s α

	Quality
	2
	The percentage of the design objectives the client thought the team achieved

The closeness of the final outcome to client’s initial expectations.
	0.78

	Overall
	4
	Design’s feasibility in its application and fabrication

Client’s opinion on implementing the design

Client’s opinion on students’ knowledge of math, science and engineering in developing solutions

Overall satisfaction with the design outcome
	0.70


This survey was validated prior to implementation using content and face validation techniques. Analytical hierarchy process (Satty, 1980) was used to determine weights for the metrics and the questions in each metrics. The respondents were faxed a copy of the survey, then a research assistant walked them through the questions by telephone and filled in the responses by hand. Next the survey data was analyzed for statistical reliability using the Cronbach’s alpha coefficient (Santos, 1999). The test illustrated that quality and overall metric displayed adequate internal consistency and inter-metric consistency (see Table 2). As a result, the satisfaction index was obtained by the summing the weighted average of each metric. The final satisfaction scores were on a scale of 1-10 with 10 being the highest.

Since clients do not always have the background to objectively assess the engineering validity of design recommendations, we also obtained third party assessment of design quality on each project. A design quality rubric (DQR) was developed to address this issue with an objective to quantify the final “quality” of the designed projects.

To develop this rubric, we first obtained evaluation schemes from mechanical engineering capstone course instructors at 30 top ranking schools. We also collected evaluation schemes from several design contests like the Formula SAE (2002), ASAE Design Competition (2002), ASME Student Design Competition (2002), and the MHEFI Material Handling Design Contest (2002).  We then extracted 23 metrics that were common across the evaluation schemes of the various universities and design contests.  These 23 metrics were aggregated into six measures: requirements, feasibility, creativity, simplicity, aesthetics and professionalism. Since aesthetics is not a requirement in many of our projects and professionalism deals with things like report quality, we further reduced the above to five measures, replacing the last two measures with an “overall impression” question to capture the reviewer’s overall assessment including professionalism and aesthetics. The metrics and their definitions are presented in Table 3. A seven-point scale was used for each question/metric and three anchors provided. A brief rationale was requested from each evaluator on each response for the purpose of inter-reviewer comparisons to evaluate consistency among the evaluators.

Table 3: Design Quality Rubric

	
	Metric
	Definition

	Basic
	Requirements
	The design meets the technical criteria and the customer requirements

	
	Feasibility
	The design is feasible in its application and fabrication / assembly

	Advanced
	Creativity
	The design incorporates original and novel ideas, non-intuitive approaches or innovative solutions

	
	Simplicity
	The design is simple, avoiding any unnecessary sophistication and complexity, and hence is:

Practical

Reliable

Serviceable

Usable

Ergonomic

Safe



	
	Overall
	Overall impression of the design solution


Four engineering professionals were hired to evaluate the design projects. Three were licensed professional engineers, each with over 10 years of experience in design and manufacturing. The fourth had 5 years of experience and was not professionally licensed.  These evaluators were asked to evaluate the project outcomes as if they were evaluating actual industry designs while taking into consideration the project time and budget constraints. The final reports of each project served as the means for the evaluation.  Specific instructions were provided to assess the design projects on their outcomes, not on the process. Each evaluator was assigned a number of reports in such a way that each report was evaluated twice to provide redundancy in the measurement.  All four evaluators looked at two reports in order to determine inter-evaluator consistency.  The quality index for each project was calculated by averaging the scores of the individual metrics, then averaging across evaluators.  The quality score is on a scale of 1-7.

The CSQ and DQR measures demonstrate a weak correlation (0.52) implying that the two could not be combined. Therefore, to study the design processes, two models were constructed with satisfaction and quality as their respective responses. A complete description of the techniques used to code the responses, missing values analysis, descriptive question analysis, and other issues on these instruments can be obtained from Jain (2003). 

Data Analysis

The small sample size and high dimensionality of the data in this study pose significant challenges. To address these concerns, we built a model out of the data currently available (so-called happenstance data) and then constructed a metamodel to study the process under desired conditions. We then deduced reliable conclusions about the cause and effect relationship within the system (Sacks, et al., 1989). If the model is reliable (tested and validated), it should imitate the actual design process.  Then we can use this model to generate responses in a virtual design of experiments (VDOE). 

We modeled the happenstance data using principal component neural networks, a special class of neural networks designed for data with high dimensionality (Diamantaras and Kung, 1996; Tan and Mavarovouniotis, 1995). This hybrid architecture helped reduce the dimensionality of the data to help compensate for the small sample size, and allowed us to predict the output in terms of the original variables.  Two neural network models were constructed using the satisfaction and quality as their target variable. A subset of the sample (11 exemplars) was used to train the networks and the remaining sample was used to cross-validate the networks. To model the design data several different network architectures were constructed and trained with the MSE on the training and cross validation set as the judging criteria using Neurosolutions software. 

To determine the relationships among the design process variables and the outcome measures, we analyzed two 212-4 fractional factorial designs with satisfaction and quality as the response variables. The data for the runs for the design grids was obtained from an artificial neural networks model, which was developed from the process and outcomes data on the 14 design projects. For more information on neural networks and their use in statistical analysis refer to Smith (1993), Warner and Misra (1996), and Shi, Schillings and Boyd (2002). 

Due to the deterministic nature of the neural network model, classical notions of experimental unit, blocking, replication and randomization were irrelevant in the experimental design. The final factorial was a resolution V design with 299 runs. Data transformation, model fitting, analysis of variance (ANOVA), model reduction and model adequacy checking were all performed in Design Expert software to obtain the response curves for various factors and factor interactions. Response was predicted under various process settings within the range of the data utilized to construct the model. Results of the analysis are reported in the next section.
RESULTS

Table 4 reports the mean and standard deviations of the process and outcomes data used in the modeling. It was observed that the number of hours varied considerably across the design process variables with the most amount of time spent on design refinement work. A correlation analysis of the 12 variables implied that only 2 pairs of variables out of a possible 72 were significantly correlated at 1 % significance level.

Table 4: Summary Statistics

	
	Mean

(Hrs)
	Standard

Deviation

	Process Data

	C/PD
	13.14
	9.28

	S/PD
	2.16
	3.27

	D/PD
	8.68
	6.1

	C/IG
	4.41
	2.45

	S/IG
	2.83
	1.9

	D/IG
	2.78
	2.87

	C/EA
	2.94
	3.82

	S/EA
	0.8
	0.75

	D/EA
	24.44
	16.72

	C/DR
	1.39
	2.55

	S/DR
	3.54
	3.48

	D/DR
	32.93
	16.9

	Outcomes Data

	CSQ
	8.14
	1.42

	DQR
	4.42
	1.06


Table 5 presents the architecture summary of the two neural network models constructed. The principal components network reduced the original 12 variables to six independent components explaining 99 % of the variation in the data.

Table 5: Network Architectures

	Parameter
	Satisfaction Model
	Quality Model

	Number of input Variables
	12
	12

	Number of Principal Components
	6
	6

	Number of hidden layer
	1
	1

	Number of hidden neurons
	3
	2

	Training set
	11
	11

	Testing Set / Cross Validation
	3
	3

	Learning Rate
	1.75
	1.75

	Momentum
	0.7
	0.7

	Step Size
	0.1
	0.1

	Number of iterations
	1000
	1000

	MSE (Training Set)
	< 0.01
	< 0.01

	MSE (Cross Validation Set)
	< 0.11
	< 0.21


The best performing networks (based on the judging criterion and production data) were the ones with a single hidden layer and 3 and 2 hidden neurons respectively for the satisfaction and the quality models. From the learning results, it was observed that the established networks architectures had a good “memory” and the trained matrices of weights and bias reflected the hidden functional relationship well. Thus the model can serve as a reasonable surrogate to reality.  Finally, because the testing and validation errors (MSE) were small and the R-Sq values low, the models developed can be considered reliable for the prediction of the response scores under any combination of the process parameters as long as they are within the range investigated. I think it might be useful to indicate here the degrees of freedom of the MSE, or in Table 6 (RC), agree (DP)
Next, Table 6 presents the analysis of variance (ANOVA) results for the satisfaction and quality models. The insignificant factors are not included  (p ≤ 0.05). The large values of the F-ratios and the small p-values suggest that the model includes terms significantly affecting the responses. 

Table 6: ANOVA Results

	Source
	Sum of
Squares
	df
	Mean
Square
	F
Value
	Prob > F

	Satisfaction Model

	Model
	206.81
	25
	8.27
	36.32
	< 0.0001

	C/PD
	67.32
	1
	67.32
	295.54
	< 0.0001

	S/PD
	19.48
	1
	19.48
	85.51
	< 0.0001

	C/IG
	9.66
	1
	9.66
	42.43
	< 0.0001

	S/IG
	2.04
	1
	2.04
	8.95
	0.0030

	D/IG
	6.71
	1
	6.71
	29.48
	< 0.0001

	C/EA
	4.50
	1
	4.50
	19.74
	< 0.0001

	S/EA
	6.53
	1
	6.53
	28.69
	< 0.0001

	C/DR
	21.87
	1
	21.87
	96.01
	< 0.0001

	S/DR
	3.46
	1
	3.46
	15.20
	0.0001

	D/DR
	15.78
	1
	15.78
	69.27
	< 0.0001

	Quality Model

	Model
	209.95
	22
	9.54
	24.06
	< 0.0001

	C/PD
	3.11
	1
	3.11
	7.84
	0.0055

	S/PD
	40.97
	1
	40.97
	103.32
	< 0.0001

	D/PD
	20.52
	1
	20.52
	51.74
	< 0.0001

	C/IG
	22.86
	1
	22.86
	57.63
	< 0.0001

	S/IG
	6.78
	1
	6.78
	17.11
	< 0.0001

	S/EA
	22.72
	1
	22.72
	57.28
	< 0.0001

	C/DR
	43.47
	1
	43.47
	109.61
	< 0.0001

	D/DR
	1.78
	1
	1.78
	4.50
	0.0348


Within interactions, the individual variables follow the same trend as their primary effects, for the most part, save that some variables insignificant as primary effects appear significant in interactions (D/PD, D/EA for the satisfaction model and C/EA and D/EA for the Quality model). 

Next Table 7 presents an estimate of the relative importance of the significant factors in each model. The slopes of each variable versus the response variables were taken from the response plots of the ANOVA, then divided by the absolute value of the smallest magnitude slope (D/DR for both models).  These relative slopes, then, estimate the relative impacts the independent variables have on the response variables.

Table 7: Relative Factor Slope Scaling

* Insignificant at p ≤ 0.05

	Factor
	Relative Slope Estimates
	Relative Slope Estimates

	
	Quality 
Model
	Satisfaction Model

	Conceptual Problem Definition (C/PD)
	4.96
	8.20

	Conceptual Idea Generation (C/IG)
	- 36.50
	8.16

	Conceptual Engineering Analysis (C/EA)
	*
	- 4.09

	Conceptual Design Refinement (C/DR)
	- 48.97
	-11.83

	System Problem Definition (S/PD)
	40.46
	9.46

	System Idea Generation (S/IG)
	31.61
	*

	System Engineering Analysis (S/EA)
	114.51
	21.06

	System Design Refinement (S/DR)
	*
	- 4.13

	Detailed Problem Definition (D/PD)
	-14.82
	*

	Detailed Idea Generation (D/IG)
	*
	- 7.71

	Detailed Engineering Analysis (D/EA)
	*
	- 6.06

	Detailed Design Refinement (D/DR)
	- 1.00
	- 1.00


For the satisfaction model, the table indicates that system level engineering analysis (S/EA) has an effect that is almost 21 times stronger than D/DR. Conceptual and system level problem definition activities are also relatively more important as compared to design refinement activities. Finally conceptual level design refinement activities show up as the variable with highest negative impact. Similarly it can be observed that the quality model’s response shows system level work as overwhelmingly positive in impact, while C/IG and C/DR are negative. However, these results may not be completely accurate due to the limited range on some variables, like S/EA. Nonetheless, even slight evidence that S/EA is two orders of magnitude more important to the design’s end quality as D/DR is interesting and provocative.

DISCUSSION

Table 8 reports the general trends in the relationships of individual process variables to the two outcome measures as determined by the virtual experimental design. The plus and minus signs represent positive and negative effects of the independent variable on the response variable respectively.  The left-most symbol of each pair is from the satisfaction model, while right-most symbol of each pair is from the quality model. A single plus or single minus indicates a significant factor at a 5% significance level, on the same order of magnitude as D/DR.  Double plus or double negative indicates at least one order of magnitude greater impact than D/DR as reported in Table 7. Blanks denote the insignificant factors.  

Table 8: Combined Results

	
	PD
	
	IG
	
	EA
	
	DR

	C
	+
	+
	
	+ 
	– –
	
	– 
	
	
	– –
	– –

	S
	+
	+ +
	
	– 
	+ +
	
	+ +
	+ +
	
	– 
	

	D
	
	– –
	
	– 
	
	
	
	
	
	–  
	–


Table 8 shows a fair amount of consistency across the two models even though quality and satisfaction scores themselves were weakly correlated. Except for C/IG and S/IG, none of the variables change direction.  Five trends can be identified from Table 8:

1. Problem definition (PD) at the higher abstraction levels appears positively related to design outcome

2. Idea generation (IG) at higher abstraction levels has contrasting effects on client satisfaction and design quality

3. Design refinement (DR) activities across all levels of abstraction are negatively associated with the design outcome

4. Time spent on many activities at the system (S) abstraction level leads to a better design outcome in general

5. Time spent at the detail (D) abstraction level is, in general, comparatively non-value added

We developed these themes more depth in the following subsections, then conclude the discussion with study limitations.

Problem Definition and Project Scoping

Time spent on problem definition (PD) activity at the higher abstraction levels seems to have a strong positive effect on both client satisfaction and design quality.  Many PD activities can also be classified as information gathering, while others are sense-making activities on the collected information.  Conceptual level problem definition includes activities like internet or library search on existing design solutions, interacting with client to clarify the problem space, researching basic design mechanisms or analysis methods, and examining existing designs. Similarly, system level problem definition (as seen in design journals) includes activities like exploring requirements for the various subsystems, identifying the constraints on interfacing mechanisms, and understanding the final assembly sequence for the design.  

However the effect of these activities at the detail abstraction level is insignificant for the client satisfaction and strongly negative for the design quality. Since problem definition activities at higher abstraction levels seem to have a positive impact on client satisfaction and overall design quality, it follows that student designers should perhaps focus sufficient effort on activities that help define the problem scope and architectural issues related to concepts under consideration.  Time spent defining problems and gathering information at detailed levels (e.g., how do I decide the number of weldments needed?) seems to add little value to the project.  These results concur with Adams and Atman’s (2000) comparison of university freshmen and senior design processes.  They found that problem scoping cycles tended to be positively associated with performance – both in terms of design and of efficiency of design process. 

Idea Generation

Perhaps our most counter-intuitive result concerns the effect of idea generation (IG) in our sample.  Even though it is a generally accepted precept that good designs result from processes that consider multiple alternative solutions, our results are mixed across abstraction levels and models. Time spent on IG at the conceptual level is positively related to the client satisfaction and negatively related to the design quality, while the opposite is true for the system level work. Idea generation at the detail abstraction shows a weak negative association with client satisfaction and becomes insignificant for design quality.

These somewhat counter-intuitive results actually agree with another study.  Newstetter and McCracken (2001) in investigating student (mis)conceptions about design found that engineering students perceive that design is all about coming up with lots of ideas or creativity without much consideration to the merit of the ideas.  They term this misconception “ideation without substance.”  Our results suggest that ideation without substance is, in fact, detrimental to the quality of the project outcome.  Comparison of design journals to final reports reveals that often teams include alternatives that are not given serious consideration, or spend time brainstorming alternative design ideas because their advisor “forces” them to do it.  In the later case, most often the team chooses the original idea—all the others seem to be seen as throw-away ideas (e.g., ideation without substance).  However, when we look at idea generation at the system level, teams appear much more serious about the alternatives they generate, they are trying diligently to find system architectures or configurations that will make the concept work.  Our external reviewers are able to see through the smoke and mirrors and evaluate on substance I am not sure I follow this…(RC).  What I understood as “ideation without substance” was that there was no foundation to the ideas such as previous experience or benchmarking of existing solutions to similar problems… I guess I don’t understand the “throw-away ideas” part (RC)
The clients, however, seem to appreciate the concept exploration, even if it’s superficial, but do not appreciate the system-level exploration nearly as much.

This finding has important implications for design educators and for newly hired engineers.  While it may seem contrary to popular view of design, we hypothesize that students are better off refraining from spending excessive time on idea generation/brainstorming activities.  Rather, considering the finding on problem definition above, inexperienced students may achieve better outcomes by spending more time researching existing design solutions.

Iteration and Design Refinement

Table 8 shows that the effect design refinement (DR) activity is consistently negative across all abstraction levels, with the exception of system design for the quality model, which is insignificant. Design refinement activities are those that modify existing ideas and design solutions and/or that add the finishing details on designs (e.g., specifying tolerances or fasteners).  Most CAD work, prototyping work, and design changes based on test or analysis results are considered DR.   Design refinement constitutes about 40% of total design time devoted to the average student project.

Newstetter and McCracken (2001) also mention a typical student design pattern of “Design shutdown”. They state that student designers typically tend to focus on a certain design they “like” and try to make it work. Therefore they effectively “shutdown” the design from any new ideas that could potentially be tested / evaluated in parallel. This often leads to a design that does not conform to certain design constraint and so the student designers then “tweak” the design to “make” it conform to specifications. But doing so leads to other changes that need to be made to accommodate the original change. Our study may be capturing this phenomenon in the form of the large amounts of effort devoted to design refinement activities (especially at the detail abstraction level), and that such activity is negatively related to the client satisfaction and design quality. 

Although design is generally viewed as an iterative task, there are different types of iteration that can be beneficial or detrimental to the design outcome. For example, Costa and Sobek (2003) classify design iterations as rework, design or behavioral. The authors concluded that design teams should try to eliminate rework iterations, perform design iterations without skipping abstraction levels, and do behavioral iterations in parallel. We suspect that most of the DR activity seen in student design processes is rework iteration.  If that’s the case, then one would expect more effort on such activities to be associated with poor outcomes.  Exploring this supposition is the topic of ongoing work. 

System Design Work

Table 8 reveals another perhaps surprising trend.  Even though the student design teams in our sample spent considerably less time in system-level work (about 6% of design time on average) as opposed to concept or detail work (see Table 4), system-level activities have the only “++” marks in the table.  This strongly suggests that system-level design is a high-leverage activity, and yet many design teams do little of it.  Conceptual ideas are difficult to evaluate.  But by fleshing out the system-level design, the design team can get a much better estimate of performance of idea without spending the many hours it takes to detail a design.  Adjustments at the system level are fairly easy to make, while adjustments at the detailed level (e.g., in a detailed CAD drawing or prototype) are comparatively time consuming to make.  So it seems that effort levied at the system-level issues can prevent time-consuming adjustments later in the design process.

These results are consistent with Ahmed, Wallace and Blessing’s (2003) study of the basic differences among the design patterns of novice versus more experienced designers. They found that the novice design pattern was to generate ideas, implement them, and then evaluate. Experienced designers tend to add a fourth step, “preliminary evaluation”, between generate ideas and implementation. Ahmed, et al.’s preliminary evaluation is similar to our definition of system-level design. Similarly, Newstetter and McCracken (2001) found that student designers tend to jump from conceptual to detail-level work, skipping intermediate-level work.  Ignoring this step leads to a higher probability that the design will have to be revised, thereby leading to a trial and error pattern. Combining this pattern with the negative trend of design refinement noted above suggests that perhaps excess of design refinement activities are a result of overlooking the system level work or skipping the “preliminary evaluation” step.

These observations are particularly poignant given that many of the design models in design textbooks overlook this step.  Those that include system-level work spend little time it.  And there are few tools available today to aid designers in system-level work.  System-level design, then, appears to hold high potential for increasing the productivity of designing engineers.

Detailed Design Work

A final observation concerns the negative effects and insignificance of the detail design work across all the design activities.  This result is consistent with authors on design who agree that the early stages in the design process are the most important.  In fact excessive time spent on detail design in our sample seems to be detrimental to the design outcome considering that students in general tend to devote up to 70 % of their total design time at this level. One of the possible reasons for this could be because student designers skimp on the conceptual and system level design to compensate for the detail level design. 

This discussion further suggests that there are diminishing returns associated with the different levels of design abstraction.  As illustrated in Figure 1, the incremental benefit of effort spent at higher levels of abstraction is comparatively greater than the incremental benefit of detailed design work.  It follows that more effort during the conceptual and system level stages result in a better design quality and customer satisfaction. A second curve on the plot in Figure 1 shows that too much effort in detailed work may actually produce a negative effect.

Figure 1: Effort vs. Benefit by Level of Abstraction
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Limitations & Future Continuations

Like most, this study is not without limitations.  To our knowledge, this is a “first-of-its-kind” study and it’s well known that these studies are plagued by more limitations than others. The limited sample size used to draw the conclusions may well be the biggest limitation of this study. Small sample sizes can produce inaccurate or misleading results. However, compared to other design research studies, the sample size for this study is considerably large. 

Next, use of questionnaires in measuring satisfaction and quality may have biased the data somewhat.  Innovation, for example, is a feature cited as a positive quality characteristic in the DQR survey, yet by its nature is not enhanced by design refinement activities. Furthermore, the data collected in this study (both process and outcome) is subjective to a certain extent. It can also be argued that the data collected from design journal can be inaccurate, incomplete and biased to some extent. Similarly survey scores are notorious for their subjective nature. We addressed this limitation through a rigorous cross-check procedure journal coding, statistical validation of questionnaire metrics, and using neural networks which are designed specially for noisy data.  Still, because of the limitations of the data, more studies should be conducted to substantiate these findings.

Another limitation of this study is the number of variables not considered, such as effort in “non-design” activities, team dynamics, team diversity, advisor effects, team experience, and project-related characteristics (e.g., whether a prototype was required, whether it was a “clean sheet” projet or not).  Some may see this as a limitation as these could have provided more insight into the results.  But in some ways it actually strengthens the study:  We get significant results without accounting for all of these other sources of variability!  The effects of process, therefore, must be fairly strong.  

Lastly, the chronological order of the occurrence of the various process variables was not considered.  It is possible that the timing of the various activities is just as important as whether they occur or not and in what amounts.  Thus future work will seek to identify the significance of the sequence of the various design process variables.

CONCLUSION

This study attempted to gain insight into what design process variables affect outcomes in student engineering projects.  We collected data from 14 projects (representing some 60 students total) and modeled the data using two artificial neural networks, one for client satisfaction and the other for design quality.  Then by performing a virtual design of experiments, using the ANN models to predict the magnitude of the response variables, we were able to obtain estimates of the relative impacts of the twelve design process variables used.  In other words, we could answer which process variables positively or negatively impacted project outcomes, and the relative magnitude of those effects.

A central theme resulting from this study is that student designers are different from professional engineering designers.  Matthews et. al (1996) state that prescriptive methods in most (all?) engineering design texts have largely been developed based on the experiences of their authors, and little work has been done to evaluate the validity of these methods.  If this is the case, then the models proposed are perhaps well-suited for the experienced designer, but not for the novice designer.  For example, recent studies suggest that designers rely heavily on their memories and experiences (Marsh, 1997; Court, Cully, & McMahon, 1996).  But how does the novice designer rely on experience that s/he does not yet have? In addition, numerous studies have found significant differences between novice and expert designers across varied fields of study (Adams & Atman, 2000; Newsletter & McCracken, 2001; Ahmed, Wallace & Blessing, 2003; Kavakli & Gero, 2001; Cross & Cross, 1997; and others). If there are significant differences, how can one design process model be well-suited for both novice and expert designers?  

Our study suggests that design process models can be modified in several key aspects to produce better design outcomes for engineering students and other inexperienced designers.  First, novice designers should not be encouraged to sit around their dorm rooms and “try to come up with some ideas.”  Instead, they should be encouraged to research existing solutions to similar problems.  In doing so, and trying to improve them, the novice engineer begins to build that experience base that will enable him/her to become an expert designer.

Second, our results strongly suggest that students should be encouraged to delay jumping to detailed design until sufficient system-level problem definition, idea generation, and analysis work has been done.  This might also lead to another way to avoid ideation without substance (besides research existing solutions) – require students to flesh out and substantively evaluate any idea at the system level before considering it a bona-fide alternative.  The challenge here is that system-level design tools are still under development (cite).

Third, our findings suggest that giving problem definition and information gathering activities greater prominence than the obligatory mention followed by quick dismissal would greatly enhance the quality of students’ design work.

Fourth, evaluating student design teams based on whether they followed the process or not seems counter-productive.  We simply do not know yet what design processes are best for students (although we think this study points to some possibilities) since the extant processes purported in the literature have not been empirically validated.  It stands to reason that evaluating student design teams based on process rather than deliverables is perhaps not the best course of action.  

Finally, another conclusion of this study is the need for future research in specific areas.  Empirical validation of proposed design process models should be conducted.  Research into how design/engineering expertise is acquired would be highly beneficial.  As previously mentioned, the timing and sequence of design process steps must be investigated.  New representations and tools for systems-level design and analysis are need.  In short, a good deal of work is still needed before we truly understand how to help our students become the best designers they can be.
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