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ABSTRACT

When cyber attacks succeed, they affect communities, not just systems. To protect
against these threats, organizations use static analysis tools to identify vulnerabilities in
software components, especially within third-party dependencies. The effectiveness of these
tools depends on their reliance on external vulnerability databases. The specific databases
that researchers use and the way they aggregate data significantly influence the vulnerabilities
they identify and report.

In this thesis, I investigate inconsistent vulnerability counts reported by two widely
used static analysis tools, Trivy and Grype, across 927 Docker images. Trivy and Grype
rely on different vulnerability databases. I show that differences in database selection and
aggregation techniques lead to divergent vulnerability counts, classifications, and severity
metrics. My findings emphasize the need for better interoperability and aggregation
strategies in vulnerability management.

In response, I developed an integrated graph-based vulnerability database that
integrates data from the National Vulnerability Database (NVD), GitHub Advisories, and
the Open Source Vulnerability (OSV) database. By incorporating relationships such as
aliases and related vulnerabilities, our graph database enables seamless cross-referencing,
even across differing vulnerability identifiers. Further, our graph database includes EPSS
scores and CWEmappings, offering additional security perspectives. This approach improves
both coverage and collaboration, supporting informed security decisions.

Our analysis of the 2023 top ten most routinely exploited vulnerabilities demonstrates
the graph database’s practical value: while all ten were present in the NVD, OSV included
only one, and GitHub Advisories required alias relationships for identification. Moreover,
nine of the ten vulnerabilities shared linked Common Weakness Enumeration (CWE) entries,
revealing exploitable patterns in vulnerability structures. This thesis advances the field by
exposing inconsistencies in existing vulnerability tools that rely on disparate databases, and
by introducing a scalable, unified system to enable more informed security decision-making.
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INTRODUCTION

As critical systems grow increasingly reliant on digital technologies [1], a focused

commitment to cybersecurity is essential to promote resilience against emerging threats [3].

Organizations and developers are ethically obligated to prioritize cybersecurity, recognizing

that the vulnerabilities in their products can directly impact users’ safety and privacy.

The number of reported software vulnerabilities increases annually [13]. As technology

evolves, so do attack techniques [14], and organizations must consistently adapt, utilizing

security tools to detect and manage threats effectively and at scale.

One of the most widely used techniques for detecting vulnerabilities is static analysis. It

plays a crucial role in security by identifying potential weaknesses and vulnerabilities without

executing the code, making it safe and efficient for early detection of problems [21]. Static

analysis tools can detect common weaknesses in source code using static application security

testing (SAST) [30] and can identify known vulnerabilities in a project’s dependencies

through vulnerability scanning.

This thesis focuses on vulnerability identification and aggregation. In contemporary

software development, where code reuse is prevalent, third party software libraries often

present significant risks [20, 32]. Static analysis tools identify known issues, helping

developers make informed decisions about whether to patch, replace, or accept these risks.

The security and reliability of systems are greatly enhanced through the use of static analysis

tools.

Despite their utility, static analysis tools face significant challenges. False positives

are common, and interfaces are often difficult to use [18, 19, 21, 30]. Tools can produce

inconsistent results—even across versions of the same tool [22–25]. These inconsistencies
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undermine trust and complicate security decision-making.

To better understand the discrepancies in vulnerability detection, we examined the

differences in the count and type of vulnerabilities reported by two popular static analysis

tools, Trivy and Grype, across 927 Docker images. We analyzed their vulnerability

reports, comparing vulnerability counts, IDs, and severity classifications. Additionally, we

investigated their underlying databases and aggregation processes to identify the causes of

inconsistencies. Differences in how Trivy and Grype interact with vulnerability databases

determine the vulnerabilities that each report.

Static analysis tools rely on vulnerability databases to compile and report known

security flaws. However, differences in naming conventions, abstraction, and general

maintenance contribute to a lack of interoperability between vulnerability databases.

Further, vulnerability databases are prone to incompleteness, inaccuracies, and delays in

reporting [26, 35]. To address these issues, we developed an integrated graph-based database

that consolidates data from the Open Source Vulnerability (OSV)1 database, GitHub

Advisories2, and the National Vulnerability Database (NVD)3. Additionally, I included the

Exploit Prediction Scoring System (EPSS) database4 and the CWE 1000 View5, providing

deeper insights into exploitability and common software weaknesses. This approach improves

interoperability by enabling cross-referencing between different vulnerability taxonomies,

enriches security assessments with additional context, and facilitates a more comprehensive

understanding of software security risks.

I developed a graph database that unifies diverse vulnerability data sources to alleviate

inconsistencies across static analysis tool reports and vulnerability databases. I demonstrate

1https://osv.dev/
2https://github.com/advisories
3https://nvd.nist.gov/
4https://www.first.org/epss/
5https://cwe.mitre.org/data/definitions/1000.html
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how integrating multiple databases through a graph-based approach can enhance decision-

making and improve security assessments. We have made our integrated vulnerability

knowledge graph open-source to support further research and industry adoption.
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QUESTIONS, CHALLENGES AND OBJECTIVES

We adopted Schlemiel’s method in our research [27], structuring our investigation into

questions, challenges, and objectives. We had a primary question for each chapter, along

with its respective challenges and objectives.

Questions

Question 1: Why do different static analysis tools report different vulnerabilities when

analyzing the same software artifacts?

Question 2: Can an integrated vulnerability graph database enhance vulnerability

management?

Challenges and Objectives

Challenge 1: Different static analysis tools, such as Trivy and Grype, often report

inconsistent sets of vulnerabilities for the same container images, raising questions about the

sources and methods driving these discrepancies.

• Objective 1: To compare the vulnerability databases leveraged by Trivy and Grype.

• Objective 2: Analyze each tool’s documentation and source code to understand how

they retrieve, aggregate, and classify vulnerabilities.

• Objective 3: Systematically evaluate the differences in the vulnerabilities reported by

Trivy and Grype in a large corpus of Docker images.

Challenge 2: Modern security requires relying on multiple vulnerability databases, but

differences in schema, naming conventions, and abstraction making it difficult to unify and

compare vulnerability information across sources.
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• Objective 4: Determine the extent of overlap between Open Source Vulnerabilities

(OSV), GitHub Advisories, and the National Vulnerability Database (NVD) by

analyzing their shared and unique contributions.

• Objective 5: Evaluate consistency in the Common Vulnerability Scoring System

(CVSS) scores by conducting a pairwise analysis of alias relationships across databases.

• Objective 6: Integrate EPSS scores and MITRE’s CWE 1000 view to provide insights

into the vulnerability impact and exploitability of a system.

• Objective 7: Use the graph database to investigate the ten most routinely exploited

vulnerabilities from 2023.
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Abstract

As the use of microservices continues to grow and become a foundational approach to

architecting software solutions, ensuring the security of microservices is paramount. Docker

images have emerged as the predominant solution to containerize microservices–and thus,

Docker images are becoming a large attack surface. Thus, reducing vulnerabilities in Docker

images will reduce microservice cyberattacks. A common way to find vulnerabilities in

Docker images employs static analysis tools like Trivy and Grype. However, these tools

frequently generate disparate vulnerability reports when analyzing the same Docker image,

thus causing uncertainty in tool selection. We collected 927 Docker images, analyzed them

with Trivy and Grype, and compared the vulnerabilities reported in each image. Among the

865 images found to have vulnerabilities, Trivy and Grype disagreed on both the number

of vulnerabilities and the vulnerability IDs found therein. Since both tools interface with

external vulnerability databases, some discrepancies can be attributed to how the tools

interface with these external resources. The external vulnerability databases partially overlap

and frequently contradict one another, thereby creating challenges for static analysis tool

developers and end users alike. This New Ideas and Emerging Results (NIER) study contains

new and critical information that practitioners need for selecting and using static analysis

tools–given that increases in the use of Docker technologies means increases in the size of

the attack surfaces.
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Introduction

Microservices have emerged as an improved alternative to monolithic architectures and

are commonplace in contemporary software solutions. Microservices offer many benefits, such

as increased modularity, flexible configuration, simplified development, easier maintenance,

and heightened productivity [29]. Prominent companies, including Netflix, Amazon, and

Uber, have embraced the adoption of microservice architectures. As the use of microservice

architectures grow, so to does the containerization technology, which provides details for

the microservices. Docker has emerged as a front-runner containerization technology of

microservices with reportedly over 75,000 company customers1.

Docker images are used to initialize Docker containers, which in turn realize microservice

solutions. Docker images layer-based architecture alleviates challenges associated with

setting up development environments, making Docker highly desired. According to a survey

conducted in 2023, Docker was reported as the most widely used tool with most developers

expressing their intention to continue its usage in 20242.

As the use of Docker and microservices become the industry standard consequently

security risks have emerged. Vulnerabilities within Docker images can allow bad actors to

implement cyber attacks. A vulnerability is defined by the National Vulnerability Database

(NVD3) as “A weakness in the computational logic (e.g., code) found in software and

hardware components that, when exploited, results in a negative impact to confidentiality,

integrity, or availability.” Vulnerability databases such as the NVD and GitHub advisories4

store hundreds of thousands of known vulnerability details. Many of these vulnerabilities

reside in Docker images, including Docker images in active use. One study found that

1www.docker.com/trust/
2https://survey.stackoverflow.co/2023/
3https://nvd.nist.gov/vuln
4https://github.com/github/advisory-database

www.docker.com/trust/
https://survey.stackoverflow.co/2023/
https://nvd.nist.gov/vuln
https://github.com/github/advisory-database
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Table 1: The different vulnerability databases that Trivy and Grype use. Trivy uses more
vulnerability databases than Grype @IEEE 2024

Data Source Grype Trivy
NVD x x
Alpine x x
Amazon x x
Debian x x

GitHub Advisories x x
Oracle x x
Redhat x x
SUSE x x

Ubuntu CVE Tracker x x
Photon Security Advisory - x

Arch Linux - x
CBL Mariner - x

Node js Security - x
GitLab Advisories Community - x

AlmaLinux - x
RubySec - x

PhP Security - x
Rocky Linux - x

community and official Docker images had more than 180 vulnerabilities on average, with

many of the vulnerabilities being persistent between versions [28]. These findings of

widespread vulnerabilities in Docker images brings light to just how large the attack surface

is.

As more developers adopt Docker technology, limiting vulnerabilities is critical. Static

analysis of Docker images is a common strategy for assessing cybersecurity risks [7]. Static

analysis tools report known vulnerabilities within Docker image packages and artifacts. The

benefits of static analysis tools include their ability to scan software for vulnerabilities

without executing the software, and fast processing speeds [2]. However, static analysis

tools are not without fault; these tools only report known vulnerabilities and produce a

concerning number of false positives—reducing trust [9]. Thus, end users face the challenge

of picking the tool that fits their needs and has trustworthy results.

Two popular static analysis tools for Docker images are Trivy5 and Grype6. These open-

5https://github.com/aquasecurity/trivy
6https://github.com/anchore/grype

https://github.com/aquasecurity/trivy
https://github.com/anchore/grype
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source static analysis tools have become an industry standard for analyzing Docker images.

Both tools leverage vulnerability databases to report vulnerabilities in Docker images,

software bill of materials (SBOMs), and file systems. Trivy and Grype purportedly provide

the same information: reports of all known vulnerabilities in a software artifact. Despite

these similarities, we found they frequently yield different results [24][23]. For instance, in

a corpus of 1,151 Software Bills of Materials, Trivy reported 309,022 vulnerabilities whereas

Grype reported 43,553 vulnerabilities [23]. Yet, the reasons why Trivy and Grype produce

such different reports has never been investigated systematically. The absence of a systematic

evaluation is problematic. Without a systematic evaluation of each tool and comparison of

their results, end users of these tools are faced with numerous uncertainties. Which tool

should I trust? Why are the results so different? These uncertainties are impediments for

researchers and practitioners who rely on static analysis tools for assessing the security of

Docker images. Here, we evaluate and compare the results of Trivy and Grype on a common

set of targets and investigate the reasons underpinning the differences.

Our study addresses the following research goal: to systematically evaluate the

differences in the vulnerabilities reported by Trivy and Grype in a large corpus of Docker

images.

Background

Trivy and Grype rely on external databases to give them trustworthy vulnerability

information. Transitively, the users of Trivy and Grype are also reliant on these databases.

These databases contain important information about each vulnerability that is codified

using a vulnerability ID. Each entry also contains metadata for each vulnerability; examples

of metadata include the severity of the vulnerability and where the vulnerability is found.

Knowing which set of external databases each tool uses and how each tool aggregates all

vulnerability information from each database is critical.
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Figure 1: Schematic representing the process Grype (blue) and Trivy (green) use to create
the Grype-DB and Trivy-DB, respectively. Both tools use the NVD but in different ways.
Trivy aggregates information between databases into one source whereas Grype keeps the
database information separate. Figure was made with draw.io. @IEEE 2024

Figure 2: Process Diagram of the data pipeline. Docker images are pulled; then desired
versions of Trivy and Grype are downloaded. Each image is run through each Trivy and
Grype and the results are aggregated. Finally, those results are analyzed and data visuals
of the reported vulnerabilities are built. Figure was made with draw.io. @IEEE 2024

External Databases

Trivy and Grype pull vulnerability details from external databases to create Trivy-DB

and Grype-DB, their respective internal vulnerability databases (Fig. 1, Table 1). Trivy

and Grype use many of the same external databases, including the largest, most widely used

databases, GitHub Advisories, with 211,900 vulnerabilities, and the NVD, with 243,544.

Though the tools share many external databases, Trivy uses nine additional databases,

referred to as ‘vendor vulnerability databases’.

The databases often use their own labeling conventions for vulnerabilities, creating
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unique ID types. Common Vulnerabilities and Exposures (CVE) IDs are the most used ID

type for vulnerabilities. CVEs are assigned by CVE-numbering authorities, and enriched

by the NVD. Other vulnerability labels include GitHub Security Advisories (GHSA) IDs

or Amazon Linux AMI Security Advisory (ALAS) IDs, created by GitHub Advisories7 and

Amazon8 respectively. When two databases contain the same vulnerability, they are referred

to as a ‘related’ vulnerability. These related vulnerabilities can either share the same ID

or be labeled with unique IDs. Taking the infamous Log4j vulnerability for example, the

NVD labels it CVE-2021-44228, whereas the GitHub advisories label it GHSA-jfh8-c2jp-

5v3q. However, it is the same underlying vulnerability. Thus, related vulnerabilities are the

same issue documented in different databases.

Internal Aggregation of Vulnerabilities

Developers of Trivy and Grype face a formidable challenge. They need to aggregate

vulnerability information from multiple databases- some overlapping or unique to each

database- in the creation of their internal vulnerability databases. Both tools compile lists

of all the Docker image components, imported packages, operating systems, etc., all with

specific versions. The tools look for matches between the components of each Docker image

and known vulnerabilities contained in each tool’s respective internal database.

Trivy aggregates information from the NVD and the other databases to create Trivy-

DB9 as follows. Trivy combines vulnerabilities related to entries in the NVD into one local

source, i.e., Trivy-DB. Trivy uses the CVE labeling from the NVD but uses the vendor

database information to populate other data fields such as severity. This relabeling process

means most entries in Trivy-DB will have CVE IDs.

The aggregation process for Grype differs than for Trivy. Grype combines the

7https://github.com/advisories
8https://alas.aws.amazon.com/
9https://github.com/aquasecurity/trivy-db

https://github.com/advisories
https://alas.aws.amazon.com/
https://github.com/aquasecurity/trivy-db
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vulnerability databases listed in Table 1 to create Grype-DB10. Each vulnerability ID in

the set of external database becomes an entry in Grype-DB. Grype-DB contains a related

vulnerability field that informs users when a reported ID has a related vulnerability in the

NVD. The related vulnerability field is only populated when vendor databases or GitHub

Advisories have a related vulnerability in the NVD. These relationships are either provided

by the databases, or are obvious because the related IDs are identical to the CVE ID. In

the case of a vendor ID being related to multiple vulnerabilities in the NVD Grype fills the

related vulnerability field with multiple vulnerability IDs.

The NVD presents vulnerability information using common platform enumeration

(CPE)11. Historically, Grype used CPE to match components of Docker images to known

vulnerabilities in the NVD. In an effort to reduce the reporting of false positives, Grype now

limits the use of CPE matching12. Grype relies on other databases like Github Advisories,

and states some ecosystems could see up to an 80% reduction in false positives with this

change.

Methods

We began by creating a corpus of official Docker images (Fig. 2). We built a data

pipeline in Python (https://doi.org/10.5281/zenodo.13380592). We evaluated ten versions

(evenly spaced through all the available versions) of the top 97 most pulled Docker Official

images13 on Docker Hub as of February 1, 2024. Only versions compatible with a Linux

system were included. If fewer than ten versions of a Docker image were released, we used

all available versions.

We selected Trivy and Grype because of their popularity. As of August 2024, the

10https://github.com/anchore/grype-db
11https://cpe.mitre.org/about/index.html
12https://anchore.com/blog/say-goodbye-to-false-positives/
13https://hub.docker.com/search?image_filter=official

https://github.com/anchore/grype-db
https://cpe.mitre.org/about/index.html
https://anchore.com/blog/say-goodbye-to-false-positives/
https://hub.docker.com/search?image_filter=official
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GitHub repository for Trivy had been forked 2,200 times and Grype had been forked 542

times. In addition, Trivy and Grype were recommended by SECL (https://www.montana.

edu/cyber/) industry and government subject matter experts. We selected the most recent

versions of Grype (v0.73.0) and Trivy (v0.49.0) for tool comparison on February 1, 2024.

With Trivy, we used the configuration “-timeout 30m” because several images failed with

an “analyze error: timeout: context deadline exceeded”. We found a timeout of 30 minutes

was more than satisfactory to prevent this error.

We ran every Docker image in our collection through Trivy and Grype. Some Docker

images could not be analyzed by both tools. For instance, Grype returned empty JSON files

for all versions of the Docker image Mono as well as the images alpine:3.17.1, alpine3.18.5,

and alpine 3.18.2, so these images were removed from our corpus. Trivy did not process

golang:1.4rc1, and we removed this image from the corpus.

We implemented two primary controls for repeatability and validity. First, we

downloaded the tools’ databases on November 11, 2023. Thus, both tools used static

databases to avoid updates throughout the study. The databases used for both tools are

available at the DOI provided above. Second, both tools analyzed the exact same corpus of

Docker images.

The reports from Trivy and Grype are depicted in the third step of our process diagram

(Fig. 2). In the fourth step, we processed the tool reports and analyzed them.

We computed the difference in counts reported by Grype and Trivy in the Docker

images. We visualized the difference in distributions with a density plot (Fig. 3). We also

calculated descriptive statistics, i.e., the average count of vulnerabilities in each image and

the associated standard deviations.

https://www.montana.edu/cyber/
https://www.montana.edu/cyber/
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Figure 3: A density plot of the differences in Trivy and Grypes’ reported vulnerabilities per
image. The x-axis represents the difference between Trivy and Grypes’ total count for each
image. Both tools were analyzed over the corpus of 927 Docker images. @IEEE 2024

Results

Results from Trivy and Grype rarely agreed (Table 2; Fig. 3). Grype found more

vulnerabilities than Trivy in 84.6% of the Docker images. Over the 927 images in the corpus,

Trivy found 473,661 vulnerabilities, whereas Grype found 603,259.

Of the 603,259 vulnerabilities Grype reported in the corpus, 577,307 had a related

vulnerability in the NVD. With respect to these related vulnerabilities in the NVD, Grype

only double-counted vulnerabilities 675 times. These instances of double-counting are

indicative of redundant reports for the same issue. However, there were relatively few

instances. Thus, double-counting is not a primary reason that Grype generally reported

more vulnerabilities than Trivy.

The magnitude of the differences between the tool findings was often large. On average,

Trivy reported ∼140 fewer vulnerabilities than Grype (S.D. = 357.0). Furthermore, in 6.7%
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of the images, Trivy and Grype reported differences exceeding 500 vulnerabilities. The largest

difference was found in image python: 3.7.6-stretch, with a difference of 2,516 vulnerabilities.

That is, Trivy found 3,208 vulnerabilities, whereas Grype found 5,724.

Trivy and Grype only agreed on the number of vulnerabilities in 15.3% of the images

(142 of 927 images). In 62 of these 142 images, Trivy and Grype found zero vulnerabilities.

Of the remaining 865 images found to contain vulnerabilities, Trivy and Grype found the

same number of findings in 9.2% of those images. That is, only 80 images were found to

have the same number of non-zero findings. However, even when Trivy and Grype reported

the same number of vulnerabilities, the identities of the vulnerabilities (e.g., CVE IDs) never

agreed. The only instance where the tools were unanimous in their findings was when they

both found nothing.

We also observe differences in the types of IDs reported (Table 2). The external

vulnerability databases have different labeling schemes, such as GHSA IDs from GitHub

Advisories or CVE IDs from the NVD. Different counts of label types reported by Trivy and

Grype arise because they do not use the same set of databases, and they use those databases

differently (Fig. 1 and Table 1). Consequently, Trivy reported ID types Debian Linux

Advisory (DLA), Debian Security Advisory (DSA), and Node.js Security Working Group

(NSWG), all of which Grype never reported in our corpus. Conversely, Grype reported ID

types Enterprise Linux Security Advisor (ELSA) and ALAS, which Trivy never reported.

Trivy also reported a greater percentage of vulnerabilities as CVEs compared to Grype (Trivy

= 98.5%, nTrivy = 466,592; Grype = 95.1%, nGrype = 573,953 vulnerabilities).

The discrepancies between Trivy and Grype extended to the metadata associated with

vulnerabilities. The severity of the vulnerabilities is an important example of this discord.

While we did not systematically evaluate severities, we found extensive anecdotal evidence of

differences between the tool reports. In total, the tools disagreed 60,799 times on the severity

of vulnerability IDs that were identical. Taking CVE-2019-17594 as an example, Grype
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Table 2: Counts of the vulnerability IDs reported by Trivy and Grype. The ’Other’ column
contains DLA, DSA and NSWG. @IEEE 2024

Tool CVE GHSA ALAS ELSA Other Total
Trivy 466,592 965 0 0 6104 437,661
Grype 573,953 26,028 1,462 1,816 0 603,259

reported a ‘medium’ severity for this CVE, whereas Trivy reported a ‘low’ severity. We even

found instances (e.g., CVE-2019-8457) where Grype labeled a vulnerability as ‘negligible’

whereas Trivy reported the same vulnerability as ‘critical’.

Discussion

Trivy and Grype disagreed on the count, IDs, and severity of the vulnerabilities in

the corpus, begging the question, What is causing these differences? Here, we unpack the

reasons for the differences in the vulnerabilities reported by Trivy and Grype. We consider

how the tools interact with external databases (see Subsection 3) and how they aggregate

information from those databases internally (see Subsection 1).

Different Sets of External Vulnerability Databases

The external databases used by Trivy and Grype impact the IDs reported by the tools

(Table 2). However, differences in external databases are not primary factors driving the

differences in vulnerability counts. Evidence for this observation includes that Trivy found

fewer vulnerabilities despite pulling information from nine more external databases than

Grype. This observation was surprising because we expected having more information would

result in finding more vulnerabilities.

In contrast, the differences in the sets of external databases used to create Trivy-DB

and Grype-DB lead to different types of IDs being reported. Trivy, for instance, reports
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NSWG vulnerability IDs sourced from Node js Security14, a database not utilized by Grype

(Table 2). On the other hand, Grype reports the ID type ELSA, which Trivy does not. The

documentation from Trivy indicates that ELSA IDs were likely relabelled to their related

CVE IDs, causing Trivy to never report ELSA IDs. This data aggregation leads to the high

percentage of CVE IDs reported by Trivy. Thus, a primary driver of the differences reported

by Trivy and Grype is how the tools aggregate information from external databases to create

their internal vulnerability databases.

Different Internal Aggregation Processes

How the tools aggregated information from the external vulnerability databases,

specifically handling related vulnerabilities, greatly impacted their results. Their distinct

processes affected vulnerability IDs reported, their severities, and the total number of

vulnerabilities reported.

Grype reported 95.7% vulnerabilities had a related vulnerability ID in the NVD,

illustrating the extent to which the vendor vulnerability databases overlap with the NVD.

Further, external vulnerability databases may also overlap with each other. We speculate

that Grype reported more vulnerabilities (Fig. 3) because of how they handles related IDs.

Further research is needed to understand if Grype is reporting multiple IDs for the same

underlying vulnerability and the degree to which redundancies may impact overall count.

Validation into the aggregation processes used by Trivy is also needed; it remains unclear

how Trivy handles multiple related vulnerabilities. While the aggregation process used by

Grype can cause redundancies, it is transparent.

Vulnerability databases often disagree on the severity of vulnerabilities [12]. Disagree-

ment between the databases caused Trivy and Grype to report different severities for the

same vulnerability IDs. This disagreement arose because the tools can pull from different

14https://github.com/nodejs/security-wg

https://github.com/nodejs/security-wg
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databases to populate metadata for the same vulnerability ID (Fig. 1).

Disagreement in severities is particularly problematic. End users of Trivy and Grype

often filter the reported vulnerabilities by severity to tackle the most severe issues first. Thus,

disagreement in severities creates a problem for the developers of Trivy and Grype, as well

as for their end users who rely on these tools for vulnerability assessment.

It is also important to note that many vulnerability databases contain inaccuracies

and duplications [11]. These inaccuracies and duplications present an additional source

of uncertainty. Determining which source of vulnerability information static analysis tools

should use–and how that information should be aggregated–is challenging when databases

disagree.

NIER Considerations & Challenges

While we found variation in the vulnerability reports produced by Trivy and Grype, this

research does not imply that these tools should not be used. Instead, we highlight challenges

associated with their use–in particular, the challenges that arise from discrepancies between

the tools and inaccuracies in their underlying vulnerability databases. Ultimately, if Trivy

and Grype are pulling inaccurate data from the vulnerability databases, their results will

also be inaccurate.

Some research shows that NVD has robust and trustworthy severity ratings [17].

Using the NVD is mandated for federal contractors to use as an authoritative source of

threats by many federal government programs such as the Federal Risk and Authorization

Management15 program. However, the NVD is far from perfect.

While both Trivy and Grype use the NVD, these tools favor information from vendor

databases and GitHub Advisories. Grype limits matching with the NVD. Trivy specifies

choosing vendor severity ratings over the NVD. Trivy documentation states that vendor

15www.fedramp.gov/2024-02-16-rev-5-additional-documents-released/

www.fedramp.gov/2024-02-16-rev-5-additional-documents-released/
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severity ratings are more accurate than the NVD16 and Red Hat agrees 17. We also suspect

that the developers of Trivy and Grype minimize the use of the NVD because of notoriously

long lag times and pervasive inaccuracies [4]. These lags and inaccuracies can contribute

to the tools reporting false positives, one of the most significant complaints of end users of

static analysis tools [30]. Lags and inaccuracies are not unique to the NVD. However, the

impact of these flaws is exacerbated by the NVD’s prominence, large size, and processing

procedure. A comprehensive database loses value if it cannot be trusted.

Each vulnerability database compiles, updates, and validates a rapidly increasing

number of vulnerabilities. However, keeping pace with the volume and velocity of this

data is a formidable challenge. Simplifying and aggregating the information across these

databases is crucial, as manually gathering and verifying vulnerability information is both

time-consuming and tedious. Our current work takes aim at surmounting these challenges

directly.

We are currently consolidating the vulnerability information in these diverse databases

into a unified, searchable graph database that links shared vulnerabilities. Our graph

database will (1) streamline the vulnerability detection process by facilitating collaboration

among database creators/maintainers, (2) aid static analysis developers by presenting

comprehensive information in aggregate, and (3) enable end users and static analysis tool

developers to make informed decisions when sources conflict. Our goal is to make the secure

choice, the easy choice.

Threats to Validity

Our study was highly controlled – using stringent data processing steps to ensure

replicability. Moreover, our study design minimizes threats to internal validity. However,

16https://aquasecurity.github.io/trivy/v0.49/docs/scanner/vulnerability/
17www.redhat.com/en/blog/security-flaws-and-cvss-rescore-process-nvd

https://aquasecurity.github.io/trivy/v0.49/docs/scanner/vulnerability/
www.redhat.com/en/blog/security-flaws-and-cvss-rescore-process-nvd
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we examine three other potential threats to validity: construct validity, content validity, and

external validity using the classification scheme of Cook et al. [10] and Campbell et al. [8].

We consider potential threats to the construct and content validity of our study. In

particular, our study assumes that a single version of Trivy and Grype produces a meaningful

and comprehensive assessment of the vulnerabilities in each Docker image in the corpus.

However, other studies have found that different versions of the same static analysis tool

can produce different results even when holding the corpus of software artifacts constant

[24, 25]. Although this “version variation” is known to exist for Trivy and Grype [24], Trivy

and Grype have proven to produce more consistent and reliable results across versions than

some binary analysis tools [25]. Thus, we acknowledge these potential threats but do not

perceive them to undermine the overall conclusions of our study. Moreover, our systematic

design can easily be extended to include multiple versions of Trivy and Grype.

The external validity of our study primarily hinges on the breadth of the corpus of

Docker images. We analyzed 10 version of the 97 most downloaded Official Docker images

that run on Linux. Therefore, our study is representative of Official Docker images that run

on Linux. Trivy and Grype may produce different results when analyzing Docker images

that are not Official or that run on other operating systems. Thus, a modicum of caution is

warranted when extrapolating these results beyond the scope of the corpus.

Conclusions & Future Directions

Our work here introduces several challenges. The disagreement between results from

Trivy and Grype bring the following questions to the forefront: How reliable and accurate

are Trivy and Grype? Additionally, how can we improve the reliability and accuracy of the

vulnerability databases on which these tools depend? These questions point to critical research

challenges. Surmounting these challenges will reduce the attack surfaces of microservices.

The high number of vulnerabilities we found in the corpus of popular, Official Docker images
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suggests that microservices are far from secure; this statement would hold true even if half

of the reported vulnerabilities were false positives. Therefore, microservices are–and will

continue to be–prime targets for malicious actors.

We need to come together as a community to discuss how to surmount these challenges.

Moreover, we advocate for building connections among the creators and managers of

vulnerability databases, the developers of cybersecurity static analysis tools, and the

researchers and practitioners who depend on these databases and tools.
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Abstract

Vulnerability databases are essential to cybersecurity, providing developers with critical

information about software security flaws. However, inconsistencies among vulnerability

databases pose challenges for integration. To address this, we created a graph database that

consolidates data from the National Vulnerability Database (NVD), GitHub Advisories, the

Open Source Vulnerability (OSV) database, the Exploit Prediction Scoring System (EPSS),

and the CWE-1000 View. Our graph database revealed inconsistent vulnerability severity

vectors across the databases. To illustrate the utility of our graph database, we investi-

gated how the databases reported the “top ten” most routinely exploited vulnerabilities.

Our analysis revealed differences in vulnerability identifiers, and the Common Weakness

Enumeration (CWE) mappings of the top ten vulnerabilities. By aggregating vulnerability

information from disparate sources, this graph database supports cross-validation, increases

transparency, and enables efficient complex queries.
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Introduction

Cybersecurity risks in code are enumerated as vulnerabilities. Vulnerability databases

catalog known security flaws. Consequently, vulnerability databases have emerged as a

cornerstone of cybersecurity.

Creators and maintainers of each vulnerability database face a Sisyphean challenge.

New vulnerabilities are reported daily and must be vetted for accuracy. Vulnerability

submissions increased 32% from 2023 to 2024, and are estimated to continue to rise1. The

volume and velocity of new vulnerabilities being reported make maintaining the databases

more difficult. Consequently, the reliability, accuracy, and completeness of the databases are

impacted [11, 16].

In February 2024, the National Vulnerability Database (NVD) paused updates for

several months as the National Institute of Standards and Technology (NIST) worked to

address a growing backlog of submissions2. The sudden disruption left the cybersecurity

community scrambling for alternative databases3,4. The incident highlighted the dangers

of over-reliance on a single source and emphasized the necessity for a more robust, multi-

database strategy in cybersecurity.

Security tools already embrace this multi-source philosophy. Many static analysis tools

aggregate multiple vulnerability databases to improve vulnerability coverage5,6,7. However

because multiple databases will often report the same vulnerability, the way these tools

combine vulnerability data impacts which—and how many—vulnerabilities the tools report

1https://www.nist.gov/itl/nvd
2https://www.nist.gov/itl/nvd/nvd-news
3https://www.darkreading.com/vulnerabilities-threats/

fall-of-national-vulnerability-database
4https://anchore.com/blog/navigating-the-nvd-quagmire/
5https://github.com/anchore/grype
6https://github.com/aquasecurity/trivy
7https://github.com/intel/cve-bin-tool

https://www.nist.gov/itl/nvd
https://www.nist.gov/itl/nvd/nvd-news
https://www.darkreading.com/vulnerabilities-threats/fall-of-national-vulnerability-database
https://www.darkreading.com/vulnerabilities-threats/fall-of-national-vulnerability-database
https://anchore.com/blog/navigating-the-nvd-quagmire/
https://github.com/anchore/grype
https://github.com/aquasecurity/trivy
https://github.com/intel/cve-bin-tool
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[6, 24]. Security professionals and researchers often face the challenge of receiving different

vulnerability reports when analyzing the same software using static analysis tools [22, 23, 25].

Additionally, the number of vulnerabilities identified by static analysis tools influences how

Software Quality Assurance (SQA) models evaluate overall system quality [15]. Discrepancies

in the vulnerability databases used by these tools can lead to inaccurate assessments of

system quality. Tools keeping the databases separate can lead to redundant reportings of the

same vulnerability. However, aggregating vulnerability reports across databases can cause

information loss, reduce transparency, and can be problematic when vulnerability databases

disagree.

Aggregation and visualization across vulnerability databases is complex due to schema

differences, inconsistencies in metadata, and varying levels of abstraction. For instance, the

same vulnerability may have a single identifier in one database but multiple identifiers in

another. Further, vulnerability databases are constantly evolving, as are the vulnerabilities

they track8.

Until now, no technology has enabled the analysis and visualization of vulnerabilities

across vulnerability databases. Here, we created a graph database that integrates three of the

most prominent vulnerability databases: the NVD, GitHub Advisories, and the Open Source

Vulnerability (OSV) database. This graph database promotes cross-validation and enables

the visualization of cliques of varying sizes while allowing for variable levels of abstraction

in the underlying vulnerability databases. We improved overall vulnerability coverage and

enabled security practitioners to make informed decisions based on diverse perspectives.

8https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-
Vulnerability-Statistics-Suck-WP.pdf
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Related Work

Cybersecurity researchers have explored the use of graph databases for vulnerability

management. A graph database can be advantageous for mapping vulnerabilities because

it does not require a single schema. Moreover, graph databases allow for the integration of

diverse data sources and support complex queries (with multiple joins based on attributes

such as severity, ecosystem, and software version).

Bhalker et al. [5] demonstrated how a graph database can be used to visualize

relationships among vulnerabilities. The researchers [5] constructed a graph database focused

on relationships, such as “Breach Types”. This study advanced the use of graph databases in

vulnerability analysis, but was based on a relatively small collected dataset of Cyber Security

Breaches from 2009 to 2014 from varied sources.

In contrast, our graph database incorporates three extensive databases, each containing

over 200,000 vulnerabilities. Our graph database interconnects vulnerabilities using both

“aliased” and “related” vulnerabilities in our graphs. We also incorporate CWE, Common

Vulnerability Scoring System (CVSS), and Exploit Prediction Scoring System (EPSS) data

for a more holistic approach.

We are not the first to create a graph database containing the NVD. Wang et al.

[34] used a knowledge graph to improve the analysis of security vulnerabilities. These

researchers sourced vulnerability information from the NVD to address limitations such

as poor readability and inadequate visualization of correlations between vulnerabilities. By

leveraging Neo4j, they built a common vulnerabilities and exposures (CVE) knowledge graph

incorporating raw data, ontology modeling, and data extraction. Their research allowed

for deeper vulnerability analysis across dimensions like Common Weakness Enumerations

(CWEs) and severity.

Our approach expands on previous research by incorporating a more diverse set of
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Table 3: Execution time in milliseconds for Neo4j example queries. Demonstrates examples
of multi-joint searches to our graph database. Queries were preformed on Ubuntu 22.04.5
and with Neo4j version 1.61.

Neo4j Query Execution Time (ms)

GitHub and OSV alias pairs
MATCH (g:GitHub)-[:alias]-(o:OSV)

RETURN g, o

174 ms

NVD and GitHub alias pairs published after 2018
MATCH (n:NVD)-[:alias]-(g:GitHub)

WHERE datetime(n.published) > datetime(’2018-01-01T00:00:00’)

AND datetime(g.published) > datetime(’2018-01-01T00:00:00Z’)

RETURN n, g

2115 ms

Get top ten most routinely exploited vulnerabilities
WITH ["CVE-2023-3519","CVE-2023-4966","CVE-2023-20198",

"CVE-2023-20273","CVE-2023-27997","CVE-2023-34362",

"CVE-2023-22515","CVE-2021-44228","CVE-2023-2868",

"CVE-2022-47966"] AS top_vulns

MATCH (v) WHERE v.id IN top_vulns

RETURN v

456 ms

databases. Additionally, our graph database facilitates security analysis across different

identification conventions (e.g., CVE, GitHub Security Advisory [GHSA], Ubuntu security

notice[USN]).

Methods

Database Selection

We obtained vulnerability data from the NVD9, GitHub Advisories10, and OSV11,

retrieved on March 11, 2025. We selected these vulnerability databases for their widespread

adoption and integration with static analysis tools12,13,14. We incorporated all three

9https://nvd.nist.gov/vuln/
10https://github.com/advisories
11https://osv.dev/
12https://github.com/anchore/grype
13https://github.com/aquasecurity/trivy
14https://github.com/intel/cve-bin-tool

https://nvd.nist.gov/vuln/
https://github.com/advisories
https://osv.dev/
https://github.com/anchore/grype
https://github.com/aquasecurity/trivy
https://github.com/intel/cve-bin-tool
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vulnerability databases into our graph database.

Unlike vendor-specific databases, which report vulnerabilities relevant only to their

ecosystems, these three sources provide broad coverage. The NVD, maintained by the NIST,

enriches vulnerabilities as CVEs. The GitHub Advisory Database aggregates data from eight

sources, such as GitHub security advisories, the NVD, and the npm Security Advisories

database, and labels them with GHSA identifiers15. The OSV integrates filtered subsets of

data from 18 sources, including the GitHub Advisory Database, PyPI Advisory Database,

and Go Vulnerability Database, leading to the use of multiple vulnerability identifiers. In

total, the OSV has 27 different vulnerability identifier types in its database (e.g., CVE,

GHSA, USN, CGA, RSEC). While GitHub Advisories and OSV are maintained by GitHub

and Google respectively, both are open-source, allowing public contributions.

In our graph database, we also incorporated scores from the Exploit Prediction Scoring

System (EPSS). We included EPSS to promote the evaluation of exploitability metrics

concomitant with severity metrics (i.e., CVSS). EPSS assigns a score (0–1) to CVE-labeled

vulnerabilities, estimating the likelihood of exploitation in the next 30 days. It also provides a

percentile ranking, indicating the proportion of vulnerabilities with an equal or lower score.

Integrating EPSS offers developers an additional perspective on risk assessment beyond

CVSS.

We also augmented the graph with Common Weakness Enumerations (CWEs) from

the CWE 1000 view16. CWEs classify common software weaknesses that can lead to

vulnerabilities. For example, the Log4j vulnerability (e.g., ‘CVE-2023-44228’ in the NVD

and OSV, ‘GHSA-jfh8-c2jp-5v3q’ in GitHub Advisories and OSV) maps to CWE-502, which

describes unsafe deserialization of untrusted data. While vulnerabilities do not always map

15https://docs.github.com/en/code-security/security-advisories/

working-with-global-security-advisories-from-the-github-advisory-database/

about-the-github-advisory-database
16https://cwe.mitre.org/data/definitions/1000.html

https://docs.github.com/en/code-security/security-advisories/working-with-global-security-advisories-from-the-github-advisory-database/about-the-github-advisory-database
https://docs.github.com/en/code-security/security-advisories/working-with-global-security-advisories-from-the-github-advisory-database/about-the-github-advisory-database
https://docs.github.com/en/code-security/security-advisories/working-with-global-security-advisories-from-the-github-advisory-database/about-the-github-advisory-database
https://cwe.mitre.org/data/definitions/1000.html
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to CWEs, many do.

Building The Graph Database

We integrated the vulnerabilities from the three vulnerability databases using Neo4j

(version 1.61) and Python (version 3.13). All code used to build and analyze the graph

database can be found at (https://github.com/MSUSEL/msu Vuln Database Graph.git).

Each vulnerability database was represented as a unique node type (NVD, GitHub, OSV),

with each vulnerability entry corresponding to individual nodes. The attributes of these

nodes were determined by the schema of the respective source databases. These attributes

included information such as CVSS vectors and vulnerability descriptions.

Next, we established relationships between vulnerability nodes. The OSV schema, used

by GitHub and OSV, defines an ‘alias’ and ‘related’ relationships.

A ‘related’ vulnerability relationship connects two or more vulnerabilities that are (1)

similar but not unique, (2) multiple similar vulnerabilities codified in the same entry, or (3)

do not satisfy the strict definition of the alias.

An ‘alias’ relationship connects two or more vulnerabilities that affect any software

component the same way; i.e., either both vulnerabilities affect the software component

or neither do17. A patch addresses all vulnerabilities with the same alias. In our graph

database, we created alias relationships for vulnerabilities with identical identifiers across

the databases.

To add EPSS data to the ontology, we built nodes ‘EPSS’, where each node is the

score from a CVE ID and has attributes of the EPSS score, including the percentile.

Corresponding nodes with a CVE ID were connected using a relationship to the EPSS node

called ‘epssScore’.

Each CWE in the CWE-1000 view was built into nodes, with attributes such as

17https://ossf.github.io/osv-schema/

https://ossf.github.io/osv-schema/
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‘description’, ‘id’, and ‘type’. CWE nodes have relationships to vulnerability nodes via

a ‘weakness’ relationship. The ‘weakness’ relationship details are provided by the three

vulnerability databases. The CWE nodes also have their hierarchal mappings with levels of

abstraction represented through ‘parent’ and ‘child’ relationships between the CWE nodes.

Analysis

Our analyses were three-pronged. First, we investigated the overlap of vulnerabilities

across the three databases. In particular, we investigated discrepancies in attributes between

alias nodes.

Second, we conducted a pairwise investigation for each alias relationship to determine

consistency in CVSS vectors across the databases. Vectors contain manually inputted data

that is used to calculate a CVSS score for a vulnerability. To promote a valid comparison, we

only compared vulnerability pairs when each pair used the same version of CVSS. Different

versions of CVSS are expected to generate different CVSS vectors. Therefore, we compared

the CVSS vector provided by each underlying vulnerability database. If all databases had

identical vulnerability data, then the CVSS vectors for all vulnerabilities that are aliases of

one another would be identical.

Third, we analyzed the top ten most routinely exploited vulnerabilities in 2023 reported

by DHS CISA18 to determine the connectedness and similarities in reporting of the top ten

vulnerabilities across the databases. Note that the top ten for 2024 were not available in

February 2025, when this paper was written. Our exploration of the top ten vulnerability

subgraph included traversing vulnerability node relationships ‘related’, ‘alias’, ‘weakness’,

‘epssscore’ and the CWE nodes ‘parent’ and ‘child’ relationships. This exploration of the

subgraph gave us a holistic view of the top ten vulnerabilities.

We also tracked execution time for common queries (Table 3) to demonstrate the

18https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-317a

https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-317a
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Figure 4: Shows the distribution of the total 774,077 vulnerability nodes across databases.
Overlap occurs when nodes in different databases have an alias relationship between them,
implying that these are the same vulnerabilities in different databases.

response time of our graph database from a user perspective.

Results

We found an increase in total vulnerability coverage by integrating the NVD, OSV, and

GitHub Advisories. Further, we found that the databases overlap in vulnerabilities (Fig. 4),

allowing for cross-referencing across vulnerability databases. Such cross-referencing revealed

differences in CVSS vectors for aliased vulnerabilities.

Vulnerability Database Relationships

Our graph database successfully integrated data from three major vulnerability

databases. Each database contributed a distinct subset of the overall vulnerability landscape.

In total, the NVD contributed 276,339 nodes, GitHub Advisories contributed 268,644
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vulnerability nodes, and OSV contributed 229,094 nodes for a total of 774,077 vulnerability

nodes. Additionally, we had 281,448 EPSS nodes and 988 CWE nodes for a total of 1,056,513

nodes.

The NVD uses only one ID type (CVE). Similarly, GitHub only uses GHSA identifiers.

Thus, the NVD has no alias or related relationships among NVD nodes; similarly, GitHub

has no alias or related relationships among GHSA nodes. In contrast, the OSV database

has 27 different identifiers from 18 different data sources. Therefore, the OSV database has

interconnected nodes representing alias and related relationships. In total, the OSV contains

43,675 vulnerabilities with an alias and 114,882 vulnerabilities with a related vulnerability.

When comparing the three vulnerability databases against each other, GitHub con-

tributes 6,132 distinct vulnerabilities without aliases in the NVD or OSV databases. The

NVD database contributes 14,463 distinct vulnerabilities, and the OSV database contributes

132,216 distinct vulnerabilities (Fig. 4). In total, 621,266 of the 774,077 vulnerability nodes

have an alias.

Beyond aliases, our graph database nodes contained 625,439 ‘related’ vulnerability

relationships. Additionally, 672,124 nodes had an EPSS score. Vulnerabilities mapped to

CWEs 1,022,272 times (as a single vulnerability can be associated with multiple CWEs).

Overall, the graph database comprises 2,932,444 relationships.

Discrepancies in Severity Scores

Discrepancies in CVSS vectors were common. In our pairwise comparison, we identified

281,817 alias relationships where only one node had a CVSSv2 vector. Notably, there

were zero instances where both nodes in a pair had CVSSv2 vectors (Table 4), making

the comparison of CVSSv2 vectors impossible.

There were 65,898 alias relationships in which only one node had a CVSSv3 vector,

preventing direct comparison for these pairs. However, 16,729 vulnerability pairs had
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Table 4: For alias pairs with the same CVSS metric version, we analyze vector differences.
“Total Matched” counts such pairs, while “No Match” indicates pairs where only one node
uses that CVSS version. The “%” column shows the percentage of alias pairs with differing
CVSS vectors.

Disagreement Matched % No Match
CVSSv2 0 0 NA 281,817
CVSSv3 65 16,729 0.38% 65,898
CVSSv3.1 27,408 214,696 12.76% 99,882
CVSSv4 392 6,971 5.62% 22,221

CVSSv3 vectors for both nodes, with 65 instances of disagreement in vectors (0.38%).

In total, 214,696 alias relationships had CVSSv3.1 vectors, with 27,408 instances

of disagreement (12.76%). In total, 99,882 alias relationships were not comparable for

CVSSv3.1 due to differences in how CVSS vectors were constructed.

For CVSSv4, there were 22,221 alias pairs that could not be compared due to differences

in how CVSS vectors were constructed. Among the 6,971 vulnerability pairs where both

nodes had CVSSv4 vectors, 392 pairs (5.62%) had differing CVSSv4 vectors.

Severity vectors for a vulnerability often depended on the underlying vulnerability

database. The discrepancies in CVSS vectors across alias pairs, specifically with version

CVSSv3.1, highlight important discrepancies across the NVD, GitHub, and OSV databases.

Moreover, these discrepancies indicate the subjectivity inherent in quantifying the severity

of vulnerabilities, even when using the same scoring system [33].

Top Ten Routinely Exploited Vulnerabilities

The utility of our graph database is evident from our analysis of the database coverage

of the top ten most frequently exploited vulnerabilities, their CVSS and EPSS scores, and

their mappings to CWEs. The top ten vulnerabilities were reported using CVE IDs. The

NVD included all ten vulnerabilities, whereas the OSV database contained only one, CVE-

2021-44228. Although GitHub does not label vulnerabilities with CVE IDs, we utilized the
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Figure 5: Graph of the top exploited vulnerability, CVE-2023-3519. The blue GHSA node
GHSA-m4j4-rmj5-w5gp represents an alias listed in GitHub Advisories, while the CVE
node originates from the NVD. Both databases classify this as a CWE-94 weakness, and
CVE-2023-2519 has an EPSS score of 0.96607

alias relationships of the CVE nodes to identify all ten vulnerabilities under GHSA IDs in

the GitHub advisories database.

Severity vectors were consistent for the top ten vulnerabilities. The CVSSv3.1 severity

scores were consistent across the databases for the top ten vulnerabilities. The lowest severity

score was CVE-2023-20273 at 7.2.

EPSS scores were surprisingly low for three of the ten most exploited vulnerabilities.

Whereas seven of the top ten vulnerabilities had EPSS scores greater than 0.88, the remaining

3 top ten routinely exploited vulnerabilities had low EPSS scores: CVE-2023-20273 had an

EPSS score of 0.07, CVE-2023-27997 had an EPSS score of 0.10651, and CVE-2023-2868

had an EPSS score of 0.07893. These low EPSS scores contradict the exploitability ranking

provided by DHS CISA.

When we queried all weaknesses associated with the top ten vulnerabilities, we found

that many of the top ten vulnerabilities share CWEs (Fig. 6). The most shared weakness

was CWE-20, Improper Input Validation, with 4 of the top ten mapping to it.

CWE mappings can be inconsistent across vulnerability databases. One illustrative
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Figure 6: Top exploited vulnerabilities in the NVD database mapped to CWEs. Here, we
can see many of the top vulnerabilities and shared CWEs. The top ten vulnerabilities map
to 14 CWEs. Two of those CWEs are NVD-CWE-noinfo and NVD-CWE-Other. The
graph image was generated by Neo4j.

mapping is for CVE-2023-4966, where the NVD maps it to CWE-199 and NVD-CWE-

noinformation. Upon further investigation, we know this occurs because the NVD uses a

secondary source, ’secure@citrix.com’, that maps the id to CWE-199, but the NVD, as a

primary source, has no information on what weakness the id maps to.

By including the CWE 1000 view of parent and child relationships, we added another

layer of detail to our graph database. Using Neo4j we can specify the depth of parent-

child relationships we want visualized. When looking at the vulnerability that mapped to

the most CWEs, CVE-2021-44228, one parent-child relationship deep we found two of the

CWEs, CWE-502 and, CWE-400,mapped to the same parent CWE, CWE-664.

Looking one parent-child CWE relationship deep for the top ten vulnerabilities the

resulting graph has only two path components. Nine of the top vulnerability nodes have

a connected chain of parent-child relationships between their CWE nodes. Only one

vulnerability, CVE-2023-20198, had no path of relationships connecting it to the other top

ten vulnerabilities.
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Discussion

In this research, we proposed unifying multiple vulnerability databases—NVD, GitHub

Advisories, and OSV—into a single integrated graph database. We expanded the database

with additional layers of vulnerability information by including the EPSS scores and the

CWE-1000 view. Although the integration of information from these databases improved our

overall domain coverage, it also revealed that there are significant overlaps and inconsistencies

of information between databases. The overlaps are exposed through the examination of

the relationships (e.g., aliases) between the vulnerability nodes, and inconsistencies are

uncovered through variations in attribute measurements (e.g., differing CVSS scores for

the same vulnerability).

Making vulnerability management fast and easy for developers and practitioners is

imperative. Our analysis of the top ten most routinely exploited vulnerabilities identified by

CISA reveals the utility of our integrated database solution. For example, the mapping of

CWEs with corresponding CVEs revealed significant patterns in the top ten vulnerabilities,

showcasing how a graph database can reveal valuable insights quickly.

Graph Construction and Connectivity

An integrated graph database solution offers interconnected, varied perspectives for

vulnerability management. By incorporating three databases maintained by prominent

organizations, GitHub, Google, and NIST, we improve overall ecosystem coverage and

robustness.

In total, our database has 774,077 (Fig. 4) vulnerability nodes and 1,056,513 nodes when

including EPSS and CWE nodes. The integrated graph database has 2,932,444 relationships

informing users of EPSS scores, associated weaknesses, aliases, related vulnerabilities, and

parent-child relationships with corresponding CWEs. Over 621,266 vulnerabilities from the
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combined datasets have alias relationships, allowing for cross-database comparisons. To

further highlight the utility of an integrated graph database solution, this practical approach

allows practitioners to easily access information with fast and easy-to-create queries.

Discrepancies in Cross-Database Analysis

Filtering vulnerability reports by severity is a common practice in vulnerability

management [31], and practitioners often use CVSS vectors to prioritize vulnerabilities.

A key finding from our analysis is the inconsistency in CVSS vectors reported by different

databases. Our analysis of CVSSv3.1 vectors from pairwise comparisons between two distinct

databases revealed discrepancies in 12.76% of the cases, highlighting the subjective nature

of severity assessments. Previous research has shown that CVSS vectors are subjective,

with up to 68% of evaluators assigning different severity ratings for the same vulnerabilities,

demonstrating inconsistencies in the scoring process [36].

Our integrated graph database solution does not determine which source provides the

‘correct’ severity score; instead, it allows practitioners to decide which source they trust, by

offering alternatives that can enable informed decisions.

Furthermore, integrating additional EPSS score data provides an additional perspective.

EPSS offers an empirical measure of the likelihood that a vulnerability will be exploited.

However, EPSS scores only map to vulnerabilities with CVE IDs. Utilizing the ‘alias’

relationships in our graph database, vulnerabilities with different IDs, such as GHSA or

USN, can still access this extra layer of information. This allows developers the autonomy

to choose the sources that fit their needs without incurring the extra effort of scouring the

internet.

Using the Graph Database

Using DHS CISA’s top ten most frequently exploited vulnerabilities as an example, we

see how the relationships between vulnerabilities and their associated CWEs are suggestive of
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common patterns in exploit techniques. More specifically, many of the top ten vulnerabilities

share CWEs.

By incorporating CWE parent-child relationships, we found that 9 out of the top

10 vulnerabilities were related. The connectivity between the CWEs of the top ten most

routinely exploited vulnerabilities highlights the benefit of this integrated view. Importantly,

patterns of weakness that are commonly exploited emerge without the need to scan multiple

vulnerability databases or click one’s way through the CWE-1000 view.

Conclusion

Our database provides a computational solution that decreases cognitive workloads

and the chance that a relationship will be missed via manual error. Moreover, query

execution time is fast despite containing over a million nodes and nearly three million

relationships (Table 1). Thus, by integrating multiple vulnerability databases into a single

graph database, we provide an elegant and efficient solution for the onerous and vexing

problem of vulnerability mapping and management.

Our future work will focus on expanding data sources, incorporating real-time updates,

and providing an API for accessibility. By strengthening this solution, we aim to further

support security practitioners in mitigating threats with greater accuracy and efficiency.
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CONCLUSION

I provide an analysis of static analysis tools to understand discrepancies in vulnerability

detection (Chapter 3). I found that Trivy’s broader selection of external databases did

not lead to more vulnerabilities being detected. However, the external source selection

and aggregation techniques did affect what vulnerabilities were reported and how many.

Additionally, differences in how each tool handles related vulnerabilities and assigns severities

resulted in the same vulnerabilities being reported with differing severities. This manuscript

contributes to our understanding of how the design choices of different static analysis tools

impact vulnerability reports.

The findings on discrepancies in static analysis tools underscore the challenges posed by

inconsistencies in vulnerability databases and the need for improved aggregation strategies.

I created a unified graph database solution that addresses aggregation issues by integrating

OSV, GitHub Advisories, and NVD, enabling seamless cross-referencing across multiple

sources. This approach preserves critical information by linking vulnerabilities under

different naming conventions, including EPSS scores, CVSS ratings, and CWE classifications.

This structure eliminates the need for time-consuming manual reconciliation and provides a

comprehensive view of vulnerability data.

My analysis of the top ten routinely exploited vulnerabilities demonstrates the value of

this approach. While the NVD contained all ten vulnerabilities, OSV included only CVE-

2021-44228, and GitHub Advisories required alias mapping to identify them all. Beyond

database coverage, my investigation into CWE relationships revealed a striking trend: nine

vulnerabilities shared linked weaknesses, exposing patterns in the techniques used to exploit

them. These findings highlight how a graph database streamlines vulnerability analysis,

equipping security professionals with the tools to detect trends and make more informed

security decisions.
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This thesis contributes to the field of vulnerability management by uncovering the

effects of vulnerability database aggregation on static analysis tool reports and proposing

an integrated graph database solution. I identified discrepancies in vulnerability detection

and severity reporting by analyzing Trivy and Grype (Chapter 3), emphasizing the need for

improved aggregation strategies. In response, Chapter 4 presents a unified graph database

that integrates data from OSV, GitHub Advisories, and NVD, providing a comprehensive and

easily accessible view of vulnerabilities. This approach links vulnerabilities across different

naming conventions and preserves critical data such as EPSS scores, CVSS ratings, and CWE

classifications, simplifying the reconciliation of conflicting information. Our analysis of the

top ten exploited vulnerabilities further demonstrates the utility of this system in identifying

patterns and trends, ultimately enabling security professionals to make more informed and

efficient decisions.
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