
Deciphering Discrepancies: A Comparative Analysis
of Docker Image Security

Brittany Boles∗, Eric O’Donoghue∗, A. Redempta Manzi Muneza∗, Garrett Perkins∗

Clemente Izurieta∗†‡, Ann Marie Reinhold∗‡

∗Gianforte School of Computing, Montana State University, Bozeman, Montana, USA
†Idaho National Laboratory, Idaho Falls, Idaho, USA

‡Pacific Northwest National Laboratory, Richland, Washington, USA

Abstract—As the use of microservices continues to grow
and become a foundational approach to architecting software
solutions, ensuring the security of microservices is paramount.
Docker images have emerged as the predominant solution to con-
tainerize microservices–and thus, Docker images are becoming
a large attack surface. Thus, reducing vulnerabilities in Docker
images will reduce microservice cyberattacks. A common way
to find vulnerabilities in Docker images employs static analysis
tools like Trivy and Grype. However, these tools frequently
generate disparate vulnerability reports when analyzing the same
Docker image, thus causing uncertainty in tool selection. We
collected 927 Docker images, analyzed them with Trivy and
Grype, and compared the vulnerabilities reported in each image.
Among the 865 images found to have vulnerabilities, Trivy and
Grype disagreed on both the number of vulnerabilities and
the vulnerability IDs found therein. Since both tools interface
with external vulnerability databases, some discrepancies can be
attributed to how the tools interface with these external resources.
The external vulnerability databases partially overlap and fre-
quently contradict one another, thereby creating challenges for
static analysis tool developers and end users alike. This New
Ideas and Emerging Results (NIER) study contains new and
critical information that practitioners need for selecting and using
static analysis tools–given that increases in the use of Docker
technologies means increases in the size of the attack surfaces.

I. INTRODUCTION

Microservices have emerged as an improved alternative to
monolithic architectures and are commonplace in contempo-
rary software solutions. Microservices offer many benefits,
such as increased modularity, flexible configuration, simplified
development, easier maintenance, and heightened productivity
[1]. Prominent companies, including Netflix, Amazon, and
Uber, have embraced the adoption of microservice architec-
tures. As the use of microservice architectures grow, so to
does the containerization technology, which provides details
for the microservices. Docker has emerged as a front-runner
containerization technology of microservices with reportedly
over 75,000 company customers3.

Docker images are used to initialize Docker containers,
which in turn realize microservice solutions. Docker images
layer-based architecture alleviates challenges associated with
setting up development environments, making Docker highly

3www.docker.com/trust/

desired. According to a survey conducted in 2023, Docker was
reported as the most widely used tool with most developers
expressing their intention to continue its usage in 20244.

As the use of Docker and microservices become the in-
dustry standard consequently security risks have emerged.
Vulnerabilities within Docker images can allow bad actors
to implement cyber attacks. A vulnerability is defined by
the National Vulnerability Database (NVD5) as “A weakness
in the computational logic (e.g., code) found in software
and hardware components that, when exploited, results in a
negative impact to confidentiality, integrity, or availability.”
Vulnerability databases such as the NVD and GitHub advi-
sories6 store hundreds of thousands of known vulnerability
details. Many of these vulnerabilities reside in Docker images,
including Docker images in active use. One study found that
community and official Docker images had more than 180 vul-
nerabilities on average, with many of the vulnerabilities being
persistent between versions [2]. These findings of widespread
vulnerabilities in Docker images brings light to just how large
the attack surface is.

As more developers adopt Docker technology, limiting
vulnerabilities is critical. Static analysis of Docker images is a
common strategy for assessing cybersecurity risks [3]. Static
analysis tools report known vulnerabilities within Docker
image packages and artifacts. The benefits of static analysis
tools include their ability to scan software for vulnerabilities
without executing the software, and fast processing speeds [4].
However, static analysis tools are not without fault; these tools
only report known vulnerabilities and produce a concerning
number of false positives—reducing trust [5]. Thus, end users
face the challenge of picking the tool that fits their needs and
has trustworthy results.

Two popular static analysis tools for Docker images are
Trivy7 and Grype8. These open-source static analysis tools
have become an industry standard for analyzing Docker im-
ages. Both tools leverage vulnerability databases to report

4https://survey.stackoverflow.co/2023/
5https://nvd.nist.gov/vuln
6https://github.com/github/advisory-database
7https://github.com/aquasecurity/trivy
8https://github.com/anchore/grype



Fig. 1. Schematic representing the process Grype (blue) and Trivy (green) use to create the Grype-DB and Trivy-DB, respectively. Both tools use the NVD
but in different ways. Trivy aggregates information between databases into one source. Note Grype-DB uses Vunnel2, an Anchore tool, to pull the different
vulnerability databases.

vulnerabilities in Docker images, software bill of materials
(SBOMs), and file systems. Trivy and Grype purportedly pro-
vide the same information: reports of all known vulnerabilities
in a software artifact. Despite these similarities, we found
they frequently yield different results [6] [7]. For instance,
in a corpus of 1,151 Software Bills of Materials, Trivy re-
ported 309,022 vulnerabilities whereas Grype reported 43,553
vulnerabilities [7]. Yet, the reasons why Trivy and Grype
produce such different reports has never been investigated
systematically. The absence of a systematic evaluation is
problematic. Without a systematic evaluation of each tool
and comparison of their results, end users of these tools
are faced with numerous uncertainties. Which tool should I
trust? Why are the results so different? These uncertainties
are impediments for researchers and practitioners who rely
on static analysis tools for assessing the security of Docker
images. Here, we evaluate and compare the results of Trivy
and Grype on a common set of targets and investigate the
reasons underpinning the differences.

Our study addresses the following research goal: to system-
atically evaluate the differences in the vulnerabilities reported
by Trivy and Grype in a large corpus of Docker images.

II. BACKGROUND

Trivy and Grype rely on external databases to give them
trustworthy vulnerability information. Transitively, the users
of Trivy and Grype are also reliant on these databases.
These databases contain important information about each
vulnerability that is codified using a vulnerability ID. Each
entry also contains metadata for each vulnerability; examples
of metadata include the severity of the vulnerability and where
the vulnerability is found. Knowing which set of external
databases each tool uses and how each tool aggregates all
vulnerability information from each database is critical.

A. External Databases

Trivy and Grype pull vulnerability details from external
databases to create Trivy-DB and Grype-DB, their respective
internal vulnerability databases1. Trivy and Grype use many of

the same external databases, including the largest, most widely
used databases, GitHub Advisories, with 211,900 vulnerabil-
ities, and the NVD, with 243,544. Though the tools share
many external databases, Trivy uses nine additional databases,
referred to as ‘vendor vulnerability databases’.

The databases often use their own labeling conventions
for vulnerabilities, creating unique ID types. Common Vul-
nerabilities and Exposures (CVE) IDs are the most used ID
type for vulnerabilities. CVEs are primarily assigned by CVE-
numbering authorities, and enriched by the NVD. Other vul-
nerability labels include GitHub Security Advisories (GHSA)
IDs or Amazon Linux AMI Security Advisory (ALAS) IDs,
created by GitHub Advisories9 and Amazon10 respectively.
When two databases contain the same vulnerability, they are
referred to as a ‘related’ vulnerability or an alias. These related
vulnerabilities can either share the same ID or be labeled
with different IDs. Taking the infamous Log4j vulnerability
for example, the NVD labels it CVE-2021-44228, whereas the
GitHub advisories label it GHSA-jfh8-c2jp-5v3q. However, it
is the same underlying vulnerability. Thus, related vulnerabil-
ities are the same issue documented in different databases.

B. Internal Aggregation of Vulnerabilities

Developers of Trivy and Grype face a formidable challenge.
They need to aggregate vulnerability information from multi-
ple databases- some overlapping or unique to each database- in
the creation of their internal vulnerability databases. Both tools
compile lists of all the Docker image components, imported
packages, operating systems, etc., all with specific versions.
The tools look for matches between the components of each
Docker image and known vulnerabilities contained in each
tool’s respective internal database.

Trivy aggregates information from the NVD and the other
databases to create Trivy-DB11 as follows. Trivy combines
vulnerabilities related to entries in the NVD into one local

9https://github.com/advisories
10https://alas.aws.amazon.com/
11https://github.com/aquasecurity/trivy-db



Fig. 2. Process Diagram of the data pipeline. Docker images are pulled; then desired versions of Trivy and Grype are downloaded. Each image is run through
each Trivy and Grype and the results are aggregated. Finally, those results are analyzed and data visuals of the reported vulnerabilities are built.

TABLE I
THE DIFFERENT VULNERABILITY DATABASES THAT TRIVY AND GRYPE

USE. TRIVY USES MORE VULNERABILITY DATABASES THAN GRYPE

Data Source Grype Trivy
NVD x x

Alpine x x
Amazon x x
Debian x x

GitHub Advisories x x
Oracle x x
Redhat x x
SUSE x x

Ubuntu CVE Tracker x x
Photon Security Advisory - x

Arch Linux - x
CBL Mariner - x

Node js Security - x
GitLab Advisories Community - x

AlmaLinux - x
RubySec - x

PhP Security - x
Rocky Linux - x

source, i.e., Trivy-DB. Trivy uses the CVE labelling from the
NVD but uses the vendor database information to populate
other data fields such as severity. This relabeling process
means most entries in Trivy-DB will have CVE IDs.

The aggregation process for Grype differs than for Trivy.
Grype combines the vulnerability databases listed in Table
I to create Grype-DB12. Each vulnerability ID in the set of
external database becomes an entry in Grype-DB. Grype-DB
contains a related vulnerability field that informs users when a
reported ID has a related vulnerability in the NVD. The related
vulnerability field is only populated when vendor databases or
GitHub Advisories have a related vulnerability in the NVD.
These relationships are either provided by the databases, or are
obvious because the related IDs are identical to the CVE ID. In
the case of a vendor ID being related to multiple vulnerabilities
in the NVD Grype fills the related vulnerability field with
multiple vulnerability IDs.

The NVD presents vulnerability information using common
platform enumeration (CPE)13. Historically, Grype used CPE
to match components of Docker images to known vulnera-
bilities in the NVD. In an effort to reduce the reporting of
false positives, Grype now limits the use of CPE matching14.

12https://github.com/anchore/grype-db
13https://cpe.mitre.org/about/index.html
14https://anchore.com/blog/say-goodbye-to-false-positives/

Grype relies on other databases like Github Advisories, and
states some ecosystems could see up to an 80% reduction in
false positives with this change.

III. METHODS

We began by creating a corpus of official Docker images
(Fig. 2). We built a data pipeline in Python (https://doi.org/
10.5281/zenodo.13380592). We evaluated ten versions (evenly
spaced through all the available versions) of the top 97 most
pulled Docker Official images15 on Docker Hub as of February
1, 2024. Only versions compatible with a Linux system were
included. If fewer than ten versions of a Docker image were
released, we used all available versions.

We selected Trivy and Grype because of their popularity.
As of August 2024, the GitHub repository for Trivy had been
forked 2,200 times and Grype had been forked 542 times. In
addition, Trivy and Grype were recommended by SECL (https:
//www.montana.edu/cyber/) industry and government subject
matter experts. We selected the most recent versions of Grype
(v0.73.0) and Trivy (v0.49.0) for tool comparison on February
1, 2024. With Trivy, we used the configuration “-timeout 30m”
because several images failed with an “analyze error: timeout:
context deadline exceeded”. We found a timeout of 30 minutes
was more than satisfactory to prevent this error.

We ran every Docker image in our collection through Trivy
and Grype. Some Docker images could not be analyzed by
both tools. For instance, Grype returned empty JSON files
for all versions of the Docker image Mono as well as the
images alpine:3.17.1, alpine3.18.5, and alpine 3.18.2, so these
images were removed from our corpus. Trivy did not process
golang:1.4rc1, and we removed this image from the corpus.

We implemented two primary controls for repeatability
and validity. First, we downloaded the tools’ databases on
November 11, 2023. Thus, both tools used static databases
to avoid updates throughout the study. The databases used for
both tools are available at the DOI provided above. Second,
both tools analyzed the exact same corpus of Docker images.

The reports from Trivy and Grype are depicted in the third
step of our process diagram (Fig. 2). In the fourth step, we
processed the tool reports and analyzed them.

We computed the difference in counts reported by Grype
and Trivy in each version of each Docker image. We visualized
the difference in distributions with a density plot (Fig. 3). We

15https://hub.docker.com/search?image filter=official

https://doi.org/10.5281/zenodo.13380592
https://doi.org/10.5281/zenodo.13380592
https://www.montana.edu/cyber/
https://www.montana.edu/cyber/


Fig. 3. A density plot of the differences in Trivy and Grypes’ reported
vulnerabilities per image. The x-axis represents the difference between Trivy
and Grypes’ total count for each image. Both tools were analyzed over the
corpus of 927 Docker images. In total, Grype reported 603,259 vulnerabilities,
and Trivy reported 473,661.

also calculated descriptive statistics, i.e., the average count
of vulnerabilities in each image and the associated standard
deviations.

IV. RESULTS

Results from Trivy and Grype rarely agreed (Table II; Fig.
3). Grype found more vulnerabilities than Trivy in 84.6% of
the Docker images. Over the 927 images in the corpus, Trivy
found 473,661 vulnerabilities, whereas Grype found 603,259.

Of the 603,259 vulnerabilities Grype reported in the corpus,
577,307 had a related vulnerability in the NVD. With respect
to these related vulnerabilities in the NVD, Grype only double-
counted vulnerabilities 675 times. These instances of double-
counting are indicative of redundant reports for the same issue.
However, there were relatively few instances. Thus, double-
counting is not a primary reason that Grype generally reported
more vulnerabilities than Trivy.

The magnitude of the differences between the tool findings
was often large. On average, Trivy reported ∼140 fewer vul-
nerabilities than Grype (S.D. = 357.0). Furthermore, in 6.7%
of the images, Trivy and Grype reported differences exceeding
500 vulnerabilities. The largest difference was found in image
python: 3.7.6-stretch, with a difference of 2,516 vulnerabili-
ties. That is, Trivy found 3,208 vulnerabilities, whereas Grype
found 5,724.

Trivy and Grype only agreed on the number of vulnerabil-
ities in 15.3% of the images (142 of 927 images). In 62 of
these 142 images, Trivy and Grype found zero vulnerabilities.
Of the remaining 865 images found to contain vulnerabilities,
Trivy and Grype found the same number of findings in 9.2% of
those images. That is, only 80 images were found to have the
same number of non-zero findings. However, even when Trivy
and Grype reported the same number of vulnerabilities, the
identities of the vulnerabilities (e.g., CVE IDs) never agreed.
The only instance where the tools were unanimous in their
findings was when they both found nothing.

TABLE II
COUNTS OF THE DIFFERENT OF VULNERABILITY IDS REPORTED BY

TRIVY AND GRYPE IN THE CORPUS OF DOCKER IMAGES. THE “OTHER”
COLUMN IS COMPRISED OF ID TYPES DLA, DSA AND NSWG.

Tool CVE GHSA ALAS ELSA Other Total
Trivy 466,592 965 0 0 6104 437,661
Grype 573,953 26,028 1,462 1,816 0 603,259

We also observe differences in the types of IDs reported
(Table II). The external vulnerability databases have different
labeling schemes, such as GHSA IDs from GitHub Advisories
or CVE IDs from the NVD. Different counts of label types
reported by Trivy and Grype arise because they do not use the
same set of databases, and they use those databases differently
(Fig. 1 and Table I). Consequently, Trivy reported ID types
Debian Linux Advisory (DLA), Debian Security Advisory
(DSA), and Node.js Security Working Group (NSWG), all of
which Grype never reported in our corpus. Conversely, Grype
reported ID types Enterprise Linux Security Advisor (ELSA)
and ALAS, which Trivy never reported. Trivy also reported
a greater percentage of vulnerabilities as CVEs compared to
Grype (Trivy = 98.5%, nTrivy = 466,592; Grype = 95.1%,
nGrype = 573,953 vulnerabilities).

The discrepancies between Trivy and Grype extended to
the metadata associated with vulnerabilities. The severity of
the vulnerabilities is an important example of this discord.
While we did not systematically evaluate severities, we found
extensive anecdotal evidence of differences between the tool
reports. In total, the tools disagreed 60,799 times on the sever-
ity of vulnerability IDs that were identical. Taking CVE-2019-
17594 as an example, Grype reported a ‘medium’ severity for
this CVE, whereas Trivy reported a ‘low’ severity. We even
found instances (e.g., CVE-2019-8457) where Grype labeled a
vulnerability as ‘negligible’ whereas Trivy reported the same
vulnerability as ‘critical’.

V. DISCUSSION

Trivy and Grype disagreed on the count, IDs, and severity of
the vulnerabilities in the corpus, begging the question, What is
causing these differences? Here, we unpack the reasons for the
differences in the vulnerabilities reported by Trivy and Grype.
We consider how the tools interact with external databases (see
Subsection II-A) and how they aggregate information from
those databases internally (see Subsection II-B).

A. Different Sets of External Vulnerability Databases

The external databases used by Trivy and Grype impact the
IDs reported by the tools (Table II). However, differences in
external databases are not primary factors driving the differ-
ences in vulnerability counts. Evidence for this observation
includes that Trivy found fewer vulnerabilities despite pulling
information from nine more external databases than Grype.
This observation was surprising because we expected having
more vulnerability information would result in finding more
vulnerabilities.



In contrast, the differences in the sets of external databases
used to create Trivy-DB and Grype-DB lead to different types
of IDs being reported. Trivy, for instance, reports NSWG vul-
nerability IDs sourced from Node js Security16, a database not
utilized by Grype (Table II). On the other hand, Grype reports
the ID type ELSA, which Trivy does not. The documentation
from Trivy indicates that ELSA IDs were likely relabelled to
their related CVE IDs, causing Trivy to never report ELSA
IDs. This data aggregation leads to the high percentage of
CVE IDs reported by Trivy. Thus, a primary driver of the
differences reported by Trivy and Grype is how the tools
aggregate information from external databases to create their
internal vulnerability databases.

B. Different Internal Aggregation Processes

How the tools aggregated information from the external
vulnerability databases, specifically handling related vulnera-
bilities, greatly impacted their results. Their distinct processes
affected vulnerability IDs reported, their severities, and the
total number of vulnerabilities reported.

Grype reported 95.7% vulnerabilities had a related vulner-
ability ID in the NVD, illustrating the extent to which the
vendor vulnerability databases overlap with the NVD. Further,
external vulnerability databases may also overlap with each
other. We speculate that Grype reported more vulnerabilities
(Fig. 3) because of how they handles related IDs.

Further research is needed to understand if Grype is report-
ing multiple IDs for the same underlying vulnerability and
the degree to which redundancies may impact overall count.
Validation into the aggregation processes used by Trivy is also
needed; it remains unclear how Trivy handles multiple related
vulnerabilities. While the aggregation process used by Grype
can cause redundancies, it is transparent.

Vulnerability databases often disagree on the severity of
vulnerabilities [8]. Disagreement between the databases caused
Trivy and Grype to report different severities for the same
vulnerability IDs. This disagreement arose because the tools
can pull from different databases to populate metadata for the
same vulnerability ID (Fig. 1).

Disagreement in severities is particularly problematic. End
users of Trivy and Grype often filter the reported vulnerabil-
ities by severity to tackle the most severe issues first. Thus,
disagreement in severities creates a problem for the developers
of Trivy and Grype, as well as for their end users who rely
on these tools for vulnerability assessment.

It is also important to note that many vulnerability databases
contain inaccuracies and duplications [9]. These inaccuracies
and duplications present an additional source of uncertainty.
Determining which source of vulnerability information static
analysis tools should use–and how that information should be
aggregated–is challenging when databases disagree.

C. NIER Considerations & Challenges

While we found variation in the vulnerability reports pro-
duced by Trivy and Grype, this research does not imply that

16https://github.com/nodejs/security-wg

these tools should not be used. Instead, we highlight challenges
associated with their use–in particular, the challenges that
arise from discrepancies between the tools and inaccuracies
in their underlying vulnerability databases. Ultimately, if Trivy
and Grype are pulling inaccurate data from the vulnerability
databases, their results will also be inaccurate.

Some research shows that NVD has robust and trustworthy
severity ratings [10]. Using the NVD is mandated for federal
contractors to use as an authoritative source of threats by many
federal government programs such as the Federal Risk and
Authorization Management17 program. However, the NVD is
far from perfect.

While both Trivy and Grype use the NVD, these tools favor
information from vendor databases and GitHub Advisories.
Grype limits matching with the NVD. Trivy specifies choosing
vendor severity ratings over the NVD. Trivy documentation
states that vendor severity ratings are more accurate than
the NVD18 and Red Hat agrees 19. We also suspect that
the developers of Trivy and Grype minimize the use of the
NVD because of notoriously long lag times and pervasive
inaccuracies [11]. These lags and inaccuracies can contribute
to the tools reporting false positives, one of the most significant
complaints of end users of static analysis tools [12].

Lags and inaccuracies are not unique to the NVD. However,
the impact of these flaws is exacerbated by the NVD’s promi-
nence, large size, and processing procedure. A comprehensive
database loses value if it cannot be trusted.

Each vulnerability database compiles, updates, and vali-
dates a rapidly increasing number of vulnerabilities. However,
keeping pace with the volume and velocity of this data
is a formidable challenge. Simplifying and aggregating the
information across these databases is crucial, as manually
gathering and verifying vulnerability information is both time-
consuming and tedious. Our current work takes aim at sur-
mounting these challenges directly.

We are currently consolidating the vulnerability information
in these diverse databases into a unified, searchable graph
database that links shared vulnerabilities. Our graph database
will (1) streamline the vulnerability detection process by
facilitating collaboration among database creators/maintainers,
(2) aid static analysis developers by presenting comprehensive
information in aggregate, and (3) enable end users and static
analysis tool developers to make informed decisions when
sources conflict. Our goal is to make the secure choice, the
easy choice.

D. Threats to Validity

Our study was highly controlled – using stringent data
processing steps to ensure replicability. Moreover, our study
design minimizes threats to internal validity. However, we
examine three other potential threats to validity: construct
validity, content validity, and external validity using the clas-
sification scheme of Cook et al. [13] and Campbell et al. [14].

17www.fedramp.gov/2024-02-16-rev-5-additional-documents-released/
18https://aquasecurity.github.io/trivy/v0.49/docs/scanner/vulnerability/
19www.redhat.com/en/blog/security-flaws-and-cvss-rescore-process-nvd



We consider potential threats to the construct and content
validity of our study. In particular, our study assumes that
a single version of Trivy and Grype produces a meaningful
and comprehensive assessment of the vulnerabilities in each
Docker image in the corpus. However, other studies have found
that different versions of the same static analysis tool can
produce different results even when holding the corpus of
software artifacts constant [6], [15]. Although this “version
variation” is known to exist for Trivy and Grype [6], Trivy
and Grype have proven to produce more consistent and reliable
results across versions than some binary analysis tools [15].
Thus, we acknowledge these potential threats but do not
perceive them to undermine the overall conclusions of our
study. Moreover, our systematic design can easily be extended
to include multiple versions of Trivy and Grype.

The external validity of our study primarily hinges on
the breadth of the corpus of Docker images. We analyzed
10 version of the 97 most frequently downloaded Official
Docker images that run on Linux. Therefore, our study is
representative of Official Docker images that run on Linux.
Trivy and Grype may produce different results when analyzing
Docker images that are not Official or that run on other
operating systems. Thus, a modicum of caution is warranted
when extrapolating these results beyond the scope of the
corpus.

VI. CONCLUSIONS & FUTURE DIRECTIONS

Our work here introduces several challenges. The disagree-
ment between results from Trivy and Grype bring the fol-
lowing questions to the forefront: How reliable and accurate
are Trivy and Grype? Additionally, how can we improve the
reliability and accuracy of the vulnerability databases on
which these tools depend? These questions point to critical
research challenges. Surmounting these challenges will reduce
the attack surfaces of microservices. The high number of
vulnerabilities we found in the corpus of popular, Official
Docker images suggests that microservices are far from secure;
this statement would hold true even if half of the reported
vulnerabilities were false positives. Therefore, microservices
are–and will continue to be–prime targets for malicious actors.

As with all wicked problems, there are no silver bullets.
However, we need to come together as a community to discuss
how to surmount these challenges. Moreover, we advocate
for building connections among the creators and managers
of vulnerability databases, the developers of cybersecurity
static analysis tools, and the researchers and practitioners who
depend on these databases and tools.

ACKNOWLEDGMENTS

This research was conducted with support from the U.S. De-
partment of Homeland Security (DHS) Science and Technol-
ogy Directorate (S&T) under contract 70RSAT22CB0000005.
Any opinions contained herein are those of the author and do
not necessarily reflect those of DHS S&T. Thanks to Gabe
Cowley, Sabrina Hendricks, Madie Munro, Russell Conti,
Yvette Hastings, Zach Wadhams, Ally Buhr, Ashley Boles,

Emma Sheppard, Tom McElroy, and Jimmy Boles for their
contributions to this work.

REFERENCES

[1] M. Söylemez, B. Tekinerdogan, and A. Kolukısa Tarhan, “Challenges
and solution directions of microservice architectures: A systematic
literature review,” Applied Sciences, vol. 12, no. 11, 2022. [Online].
Available: https://www.mdpi.com/2076-3417/12/11/5507

[2] R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities
on docker hub,” in Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, ser. CODASPY ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
269–280. [Online]. Available: https://doi.org/10.1145/3029806.3029832

[3] K. Brady, S. Moon, T. Nguyen, and J. Coffman, “Docker container
security in cloud computing,” in 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC), 2020, pp. 0975–
0980.

[4] A. Aggarwal and P. Jalote, “Integrating static and dynamic analysis
for detecting vulnerabilities,” in 30th Annual International Computer
Software and Applications Conference (COMPSAC’06), vol. 1, 2006,
pp. 343–350.

[5] F. Cheirdari and G. Karabatis, “Analyzing false positive source code
vulnerabilities using static analysis tools,” in 2018 IEEE International
Conference on Big Data (Big Data), 2018, pp. 4782–4788.

[6] A. M. Reinhold, B. Boles, A. R. M. Muneza, T. McElroy, and C. Izurieta,
“Surmounting challenges in aggregating results from static analysis
tools,” Military Cyber Affairs, vol. 7, 2024. [Online]. Available: https://
digitalcommons.usf.edu/cgi/viewcontent.cgi?article=1101&context=mca

[7] E. O’Donoghue, A. M. Reinhold, and C. Izurieta, “Assessing security
risks of software supply chains using software bill of materials,” in 2nd
International Workshop on Mining Software Repositories for Privacy
and Security. IEEE International Conference on Software Analysis,
Evolution and Reengineering, 2024, [In-press].

[8] R. Croft, M. A. Babar, and L. Li, “An investigation into inconsistency of
software vulnerability severity across data sources,” in 2022 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), 2022, pp. 338–348.

[9] R. Croft, M. A. Babar, and M. M. Kholoosi, “Data quality for software
vulnerability datasets,” in 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering (ICSE), 2023, pp. 121–133.

[10] P. Johnson, R. Lagerström, M. Ekstedt, and U. Franke, “Can the common
vulnerability scoring system be trusted? a bayesian analysis,” IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 6, pp.
1002–1015, 2018.

[11] A. Anwar, A. Abusnaina, S. Chen, F. Li, and D. Mohaisen, “Cleaning the
nvd: Comprehensive quality assessment, improvements, and analyses,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 6,
pp. 4255–4269, 2022.

[12] Z. Wadhams, A. M. Reinhold, and C. Izurieta, “Automating static
code anlaysis through ci/cd pipeline integration,” in 2nd International
Workshop on Mining Software Repositories for Privacy and Security.
IEEE International Conference on Software Analysis, Evolution and
Reengineering, 2024, [In-press].

[13] T. Cook and D. Campbell, Quasi-experimentation: Design & Analysis
Issues for Field Settings. Houghton Mifflin, 1979. [Online]. Available:
https://books.google.com/books?id=BFNqAAAAMAAJ

[14] D. Campbell and J. Stanley, Experimental and Quasi-experimental
Designs for Research. R. McNally, 1966. [Online]. Available:
https://books.google.com/books?id=kFtqAAAAMAAJ

[15] A. M. Reinhold, T. Weber, C. Lemak, D. Reimanis, and C. Izurieta,
“New version, new answer: Investigating cybersecurity static-analysis
tool findings,” in 2023 IEEE International Conference on Cyber Security
and Resilience (CSR), 2023, pp. 28–35.

https://www.mdpi.com/2076-3417/12/11/5507
https://doi.org/10.1145/3029806.3029832
https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=1101&context=mca
https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=1101&context=mca
https://books.google.com/books?id=BFNqAAAAMAAJ
https://books.google.com/books?id=kFtqAAAAMAAJ

	Introduction
	Background
	External Databases
	Internal Aggregation of Vulnerabilities

	Methods
	Results
	Discussion
	Different Sets of External Vulnerability Databases
	Different Internal Aggregation Processes
	NIER Considerations & Challenges
	Threats to Validity

	Conclusions & Future Directions
	References

