DesignCon 2005

Track 5: Chip and Board Interconnect Design (5-WA1)

Performance Model for Inter-chip Busses Considering Bandwidth and Cost

Authors:

Brock J. LaMeres, University of Colorado /

Sunil P. Khatri Texas A&M University

Problem Statement

- Performance in VLSI Systems is Limited by Noise from the Package
- An Analytical Model for System Performance is needed for:

1) CAD/CAE

2) Quick Hand Calculations

Agenda

1) Problem Motivation

2) Analytical Model Development

3) Simulation Results

4) Example Use Model

• Transistor Technology is Faster than Package Technology

Agilent Technologies

• Today's Packages Have Inductive Parasitics

Signal Trace BT Resin Ground Plane Solder Mask

QFP – Wire Bond (~4.5nH)

• Inductive Interconnect Causes Noise When Signals Switch:

1) Supply Bounce

gilent Technologies

• Switching current through inductive packaging induces voltage:

$$V_{bnc} = L \cdot \left(\frac{di}{dt}\right)$$

L = Inductance of pwr/gnd pin that current is being switched through.

• Multiple Signals Switching Increase the Problem:

$$V_{bnc} = L \cdot \sum_{i}^{n} \left(\frac{di}{dt} \right)$$
 n = # of drivers
sharing the power/gnd
pin (L).

- 2) Pin-to-Pin Coupling
- Switching Signals Couple Voltage onto Neighbors:

$$V_{couple} = M_{1k} \cdot \left(\frac{di_k}{dt}\right)$$

M = Mutual Inductance between package interconnects.

• Multiple Signals Switching Increase the Problem:

$$V_{couple} = \sum_{1}^{k} M_{1k} \cdot \left(\frac{di_{k}}{dt}\right)$$

Package Inductance Creates Simultaneous Switching Noise

• SSN in Package Limits di/di

$\underline{di} \propto SSN$ dt

• Aggressive Package Design will Reduce Inductance

Die

0 0 0 0 0

- Underfill

Solder Ball

• But is Expensive

- 95% of VLSI design-starts are wire-bond

Agilent Technologies

Substrate

- Modern Design Practice
 - 1) Acceptable SSN Limits are Defined.
 - 2) Fastest (di/dt) is selected that doesn't violate limits.
- Limitations of Approach
 - SPICE is used to evaluate SSN.
 - This takes too much time.
 - The entire range of variables cannot be evaluated quickly (package, # of pwr/gnd, bus width, etc...).

- We need an *Analytical Model* to Evaluate Off-Chip Bus Performance
 - 1) Package Parasitics
 - 2) Package Cost
 - 3) Bus Width
 - 4) # of Power/Grounds

• This can be used to find Optimal Bus Configuration

"Desired Performance for the Least Cost"

• Test Circuit Topology

- 0.1um CMOS Tx/Rx
- +1.5v VDD, 0.35 Vt
- 25mA Drive Strength
- Series Terminated

• Failure Modes

Power Supply Droop

Signal Coupling

Ground Bounce

Power Supply Droop = Ground Bounce

• Bus Parameters

W_{BUS} : # of Signals Per Bus Segment of Interest

• Bus Parameters

N_G : # of Grounds Per Bus Segment of Interest

• Bus Parameters

Repetitive Pattern of Signal, Power, and Ground Pins

SPG : (# of Signals) : (# of PWR's) : (# of GND's)

SPR : SPG Ratio

• Bus Parameters

Agilent Technologies

Agilent Technologies

Agilent Technologies

• Bus Performance Description

Minimum Unit Interval

• Bus Performance Description

Bus Throughput

• Bus Performance Limits

L₁₁ : Self Inductance of Ground Path

$$V_{bnc_{self}} = L_{11} \cdot \sum_{1}^{W_{bus}} \left(\frac{di_1}{dt}\right)$$

• Bus Performance Limits

$$V_{bnc_{couple}} = \sum_{2}^{W_{bus}} M_{1k} \cdot \left(\frac{di_{k}}{dt}\right)$$

Agilent Technologies

• Bus Performance Limits

$$V_{bnc-MAX} = p \cdot V_{DD}$$

 $(p_{typical} = 5\%)$

Agilent Technologies

• Model Development

Maximum Ground Bounce

$$V_{gnd-bnc} = p \cdot V_{DD} = \begin{pmatrix} \frac{W_{bus} \cdot L_{11}}{N_g} \end{pmatrix} \begin{pmatrix} \frac{di}{dt} \end{pmatrix} + \sum_{k=2}^{W_{bus}} \begin{pmatrix} M_{1k} \frac{di}{dt} \end{pmatrix}$$

$$\underbrace{Self}_{Contribution} \quad \underbrace{Coupling}_{Contribution}$$

Model Development

Maximum Slewrate

$$\left(\frac{dv}{dt}\right)_{\max} = \frac{p \cdot V_{DD} \cdot Z_{load}}{\left(\frac{W_{bus} \cdot L_{11}}{N_g}\right) + \sum_{k=2}^{W_{bus}} M_{1k}}$$

- pull out (di/dt)
- convert to (dv/dt)

Model Development

Minimum Risetime

$$t_{rise-\min} = \frac{\left(0.8\right) \cdot \left[\left(\frac{W_{bus} \cdot L_{11}}{N_g}\right) + \sum_{k=2}^{W_{bus}} \left(M_{1k}\right)\right]}{p \cdot Z_{load}}$$

- convert slewrate to risetime

- Model Development
 - **Maximum Datarate**

$$DR_{\max} = \frac{p \cdot Z_{load}}{(1.5) \cdot (0.8) \cdot \left[\left(\frac{W_{bus} \cdot L_{11}}{N_g} \right) + \sum_{k=2}^{W_{bus}} M_{1k} \right]}$$

- convert Risetime to Datarate

Maximum Throughput

$$TP_{\max} = W_{BUS} \cdot DR_{\max}$$

• **SPICE Simulations were Performed on Three Packages**

QFP – Wire Bond

BGA – Wire Bond

BGA – Flip-Chip

Package	L_{11}	<i>K</i> ₁₂	<i>K</i> ₁₃	<i>K</i> ₁₄	<i>K</i> ₁₅	<i>K</i> ₁₆	Package	Cost Per-Pin
QFP-wb	4.550n	0.744	0.477	0.352	0.283	0.263	QFP-wb	\$0.22
BGA-wb	3.766n	0.537	0.169	0.123	0.097	0.078	BGA-wb	\$0.34
BGA-fc	1.244n	0.630	0.287	0.230	0.200	0.175	BGA-fc	\$0.63

• **QFP Wire-Bond Package Simulations**

Per-Pin Data-Rate

Agilent Technologies

Bus Throughput

- Throughput reaches an asymptotic limit as channels are added

• BGA Wire-Bond Package Simulations

Per-Pin Data-Rate

Agilent Technologies

Bus Throughput

- Level 1 : BGA Increases Performance Over QFP

• **BGA Flip-Chip Package Simulations**

Per-Pin Data-Rate

Agilent Technologies

Bus Throughput

- Level 2: Flip-Chip Increases Performance Over Wire-Bond

Cost Must Also Be Considered in Analysis

Bandwidth Per Cost

$$BPC = \left(\frac{TP}{Cost_{bus} \cdot 1e^6}\right) \quad \text{Units} = (Mb/\$)$$

• This Metric Represents "Cost Effectiveness of the Bus"

• Cost per Bus Configuration

		Number of Channels					
	Bus Configuration	1	2	4	8	16	
1	QFP-WB 8:1:1	0.66	0.88	1.32	2.20	4.40	
	QFP-WB 4:1:1	0.66	0.88	1.32	2.62	5.28	
	QFP-WB 2:1:1	0.66	0.88	1.76	3.52	7.04	
	BGA-WB 8:1:1	1.02	1.36	2.04	3.40	6.80	
	BGA-WB 4:1:1	1.02	1.36	2.04	4.08	8.16	
	BGA-WB 2:1:1	1.02	1.36	2.72	5.44	10.88	
	BGA-FC 8:1:1	1.89	2.52	3.78	6.30	12.60	
	BGA-FC 4:1:1	1.89	2.52	3.78	7.56	15.12	
▼	BGA-FC 2:1:1	1.89	2.52	5.04	10.08	20.16	

• Performance Increases with Cost (Package, SPG)

\$

• Bandwidth Per Cost Results

	Number of Channels						
Bus Configuration	1	2	4	8	16		
QFP-WB 8:1:1	612	722	505	309	152		
QFP-WB 4:1:1	1188	1122	1036	532	289		
QFP-WB 2:1:1	2245	2165	1515	758	379		
BGA-WB 8:1:1	503	594	402	234	112		
BGA-WB 4:1:1	1188	1032	747	390	304		
BGA-WB 2:1:1	2179	1961	1153	577	327		
BGA-FC 8:1:1	1764	1323	1085	847	385		
BGA-FC 4:1:1	2016	2116	2016	1411	743		
BGA-FC 2:1:1	2822	3527	2785	1924	920		

Faster Narrower Busses = More Cost Effective

• Cost of Each Bus Configuration

		Num	ber of C			
Bus Configuration	1	2	4	8	16	Most Cost Effective
QFP-WB 8:1:1	0.66	0.88	1.32	2.20	4.40	
QFP-WB 4:1:1	0.66	0.88	1.32	2.62	5.28	- BGA-WB
QFP-WB 2:1:1	0.66	0.88	1.76	3.52	7.04	- Wbus = 1
BGA-WB 8:1:1	1.02	1.36	2.04	3.40	6.80	- SPG = 2:1:1
BGA-WB 4:1:1	1.02	1.36	2.04	4.08	8.16	
BGA-WB 2:1:1	1.02	1.36	2.72	5.44	10.88	
BGA-FC 8:1:1	1.89	2.52	3.78	6.30	12.60	
BGA-FC 4:1:1	1.89	2.52	3.78	7.56	15.12	
BGA-FC 2:1:1	1.89	2.52	5.04	10.08	20.16	

• Bandwidth-per-Cost of Each Bus Configuration

Summary

- 1) Package Noise Limits System VLSI Performance
- 2) An Analytical Model was Presented to Predict Bus Performance
- 3) Datarate Approaches an Asymptotic Limit as Channels are Added
- 4) Throughput Can be Achieved Using Different Bus Configurations

Questions?

