
 

 1

FPGA Implementation of a Bartlett Direction of Arrival 
Algorithm for a 5.8GHz Circular Antenna Array 

 
Monther Abusultan  

406-994-2505 
 abusultan@montana.edu  

Sam Harkness 
406-994-2505 

harkness@montana.edu 

Brock J. LaMeres  
406-994-5987 

lameres@montana.edu 

Yikun Huang 
406-994-5983 

yhuang@montana.edu

Electrical & Computer Engineering Department, Montana State University, Bozeman, MT 59717 
 
Abstract—This paper presents the design and prototyping of 
a Bartlett direction of arrival algorithm for an adaptive array 
antenna system using a Xilinx Virtex-5 FX70 FPGA.   The 
algorithm was prototyped in both full custom VHDL 
hardware and in a Xilinx MicroBlaze soft processor to 
analyze the performance tradeoffs between hardware and 
software implementations.  The design was tested using an 
8-element circular antenna testbed.  The implementation and 
analysis presented in this work will aid system designers to 
understand the tradeoffs between implementing algorithms 
in custom hardware versus in an embedded system and 
when a hybrid approach is more advantageous. 1 2 
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1. INTRODUCTION 
Adaptive array antennas, often called smart antennas, 

consist of a set of phased antennas that are able to detect the 
spatial location of a transmitting node and in turn form a 
directional beam pattern corresponding to the node’s 
location.  This type of directional communication system 
allows optimal use of transmitted power and reduces the 
effect of interference by reinforcing the signal(s) of interest 
and suppressing all others.  Interfering sources can also be 
actively nullified using processing techniques to produce a 
more reliable communication link.  The following figures 
show two common adaptive array antenna configurations, 
(uniform circular array and uniform linear array).  In these 
figures, each configuration contains 8 antenna elements. 
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Figure 1.  8-Element Uniform Circular Array. 

 

 

 

 

 

 

Figure 2.  8-Element Uniform Linear Array. 

The two main types of smart antennas systems are 
switched beam and adaptive array [1].  In a switched beam 
system, a predetermined set of directional radiation patterns 
are used to drive the array.  This gives the system a set 
number of directions that it can transmit to.  In an adaptive 
array system, the beam pattern direction is dynamically 
formed in real-time based upon the current angle of the 
incident signal.  Figure 3 shows the radiation patterns for a 
switched beam system for an 8-element circular array.  
Figure 4 shows a single beam pattern dynamically formed in 
an adaptive array. 
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Figure 3.  Switched beam radiation patterns for an 8-
element circular array antenna system. 

 

 

 

 

 

 

 

Figure 4.  Radiation pattern produced by a circular 8-
element adaptive array antenna system (180o). 

The process of determining the angle of the incoming 
signal is called the direction of arrival (DOA) estimation.  
This is accomplished by processing the relative phases of 
the incident signal as observed by each of the antenna 
elements.  The DOA estimation is then used to perform 
Beamforming, which is the process of creating the outgoing 
radiation pattern on the antenna array in the direction of the 
other communication node.  The ability of the smart antenna 
to accurately determine the DOA of an incoming signal and 
resolve multiple transmitting nodes depends on the 
complexity of the signal processing algorithms used [2].  
There are two main types of estimation techniques: (1) 
spectral-based, and (2) parametric [1-2].  In a spectral-
based DOA, the spatial spectrum of the incident signal(s) is 
computed and the local maximas are used to find the angle 
of the incident wave front(s).  Some of the more popular 
spectral-based DOA estimator algorithms include Bartlett, 
Capone, and MUSIC [4].  In a parametric DOA, knowledge 
about the underlying data model is used to statistically 
predict the incident angle.  Parametric algorithms tend to be 
more computationally intense than spectral-based DOA, but 
yield higher accuracy.  Some popular parametric DOA 

estimation algorithms include the Maximum Likelihood 
(ML) technique and ESPRIT [1].  

Historically, the signal processing hardware has been a 
limiting factor to implementing sophisticated DOA and 
Beamforming algorithms [5-6].  The computation time and 
physical size of the hardware necessary for complex DOA 
estimation has often precluded them from being deployed 
practically in modern mobile communication systems [7].  
Recently, advances in the fabrication of digital integrated 
circuits have renewed interest in deploying complex smart 
antennas in portable communication devices.  FPGA-based 
processing has emerged as one of the most attractive 
technologies for complex DOA estimation due to the 
inherent flexibility of the hardware in addition to the ability 
to optimize the execution of the algorithm between 
hardware and software [11-15].  FPGAs allow time critical 
tasks such as Fast Fourier Transforms (FFTs) to be 
implemented in custom hardware while other less 
computationally intense operations can be performed in soft 
microprocessors.  The ability to tailor the hardware 
implementation to the specific needs of the DOA algorithm 
makes FPGAs an attractive technology.  Furthermore, the 
ability to implement all of the signal processing hardware on 
a single chip enables the practical deployment of smart 
antennas in portable communication devices. 

There has been a variety of efforts in implementing DOA 
estimation using FPGA-based hardware.  Algorithms as 
complex and unitary MUSIC [8-9] have been proven to 
synthesize and fit within modern FPGA hardware.  
Conventional DOA (Bartlett) has also been shown to easily 
fit and run within an FPGA [10].  Most of the previous work 
in this area has focused on how much of the FPGA 
resources are necessary to implement the algorithm.  While 
there are authors who report physical testing of the hardware 
system [8,10], the majority of work in this area does not test 
the algorithms using an entire system prototype.   

In this paper, we present the implementation of a Bartlett 
direction of arrival algorithm on an FPGA platform.  The 
hardware is designed for a 5.8GHz, circular antenna array 
that has been developed at Montana State University 
(MSU).  Two FPGA implementations of the Bartlett 
algorithm are presented in this work.  The first is through 
the use of full digital hardware designed at the VHDL level.  
The second is through the use of a MicroBlaze soft 
processor core on the FPGA.  Both designs are prototyped 
and tested using a Xilinx Virtex-5 FPGA that interfaces to 
the circular antenna array through RF transceiver hardware 
and an analog-to-digital converter.  The two implementation 
techniques are presented and their relative performances are 
compared to evaluate the speed and area on a Xilinx Virtex-
5 FX70 FPGA.  Based on this type of performance analysis, 
a computationally effective hybrid system can be 
constructed.  The effect of noise is not considered in this 
paper but is being studied in subsequent work. 
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2. SYSTEM DESIGN 
The system developed to perform direction of arrival 

estimation was built in a manner that makes it portable and 
interchangeable in order to allow for both improvements 
and the ability to test a wide variety of DOA algorithms. 
The system consists of two main sections.  The first is the 
test platform that generates the 8 down-converted carrier 
signals that mimic the relative phases of an incoming wave 
front observed through the circular antenna array.  The 
second is the system hardware (A/D converter and FPGA) 
that digitizes the incoming signals and computes the DOA.  

The system hardware contains two, 4-channel Analog 
Devices AD9287 A/D converters which digitize the 
incoming carrier signals. A Xilinx Virtex-5 FX70 FPGA on 
an ML507 evaluation board is used for the logic system.  
The FPGA contains the interface circuitry to control the 
A/D converter in addition to a preprocessing block that 
transforms the data into a compatible format for the DOA 
block.  The FPGA fabric is used to implement either custom 
processing hardware or soft core processors.  Two DOA 
estimation approaches were implemented.  The first was 
with custom hardware implemented in VHDL.  The second 
was with an embedded MicroBlaze 32-bit RISC soft 
processor.  The Xilinx Platform Studio (XPS) development 
environment was used to implement the soft processor 
functionality.  

The system was designed to interface with an 8-element 
circular antenna array.  The antenna array was designed to 
work at a carrier frequency of 5.8GHz.  The antenna is 
shown in figure 5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 5.8 GHz circular antenna array that our system 
was designed for. 

In order to emulate a signal being received by an 8-
element circular array antenna, a group of four Tektronix 
AFG3022 dual channel arbitrary/function generators were 
used.  These four generators are controlled using National 
Instruments Labview to generate 8-signals which are phased 
in a certain manner to mimic the phase delays seen at the 
antenna elements when a propagating plane wave arrives at 

them. This system was designed to compensate for a 
receiver board that is being designed.  

The 8-signal generators are connected to an A/D board 
that was designed at MSU. The board contains the quad, 8-
bit A/D converters.  The A/D converters use a pipelined 
flash architecture and are configured to run at 12.5MSPS 
and use a serial LVDS (ANSI-644) protocol to offload the 
data to the FPGA evaluation board.  The A/D board is 
controlled by a driver implemented in the FPGA which 
communicates with the board through a low speed SPI 
interface to configure the converters.  Figure 6 shows the 
Xilinx ML507 evaluation board containing the Virtex-5 
FX70 FPGA connected to the custom 8-channel A/D board.  
Figure 7 shows the testbed used to verify the performance of 
the DOA estimation algorithm.  

 

 

 

 

 

 

 
 
Figure 6. Xilinx ML507 board containing the Virtex-5 
FX70 FPGA connected to a custom 12.5MSPS A/D. 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 7. Testbed for the DOA estimation verification.  The 
signal generators emulate 8 down converted carrier signals 
with phases corresponding to an arbitrary incident angle as 
observed by the 5.8GHz circular antenna array. 

3. BARTLETT DOA ALGORITHM 
The Bartlett algorithm [18] is a Fourier spectrum analysis 

method. The goal is the find a set of weights w that 
maximize the received signal power. The m-element circular 
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array receives signals from several spatially separated users. 
The received signals usually contain both direct path and 
multipath signals, which are most likely from different 
directions of arrival angles.  Assume that the array response 
vector (also called steering vector) to a transmitted signal 
s1(t) from a DOA φ is a(φ)=[1, a1(φ), a2(φ), …  am-1(φ)]T, 
where ai(φ ) is a complex number denoting the amplitude 
gain and phase shift of the signal at the (ith+1) antenna 
relative to the first antenna and superscript T is the transpose 
operator. For an m-element uniform circular array of radius 
ρ,  

T
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where β = 2π/λ is the wave number, the superscript T 
denotes to transpose operation. In a typical open space, we 
can ignore the multi-path signals. Thus the total signal 
vector received by the array can be written as: 

)()()()( 1 ttsφt nax +=                                                         
where n(t) is the noise. If there are K sources that share the 
same frequency and time slot, then the signal received by 
the array is:  

)()()()(
1

ttsφt
K

k
kk nax +=∑

=                                                   
Assume that there is a signal coming from φ, the 
measurement of the Bartlett array output is: 

{ } { }222H2HH )()t(sEmax)t()t(Emax wawwxxw
ww

σφ +=
         
 

where σ2  is the noise variance. the superscript H denotes to 
the conjugate transpose operation. 

One obvious solution of Eq.1 is: 

)()(
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φφ

φ
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If )(φa is normalized, then the Bartlett weight vector is 
found to be:         

)(φB aw =                                                       
This means that the Bartlett weight vector is equal to the 
incident wave spatial signature.  

The covariance matrix of array signal for a limited length 
is:  

 

∑
=

=
T

t

Htt
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)()(1ˆ xxR                                         (7) 

where T is the sampling time. The output power spectrum of 
Bartlett method is: 

)()(
)(ˆ)(

φφ
φφP H

H
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If )(φa is normalized, then the output power spectrum is 
found to be:         

)(ˆ)( φφP H aRa=                                               
In the algorithm implementation, we typically assume a 

certain number of overlapping beams that together result in 
omni-directional coverage.  Figure 3 shows 16-beam 
patterns for an 8-element circular array.  Each array element 
will be in the center for forming one beam. In general an m-
element array may generate an arbitrary number of beam 
patterns; however it is much simpler to form q·m beam 
patterns, where q=1,2,…Q, with 360°/Q ≥ 1/10 of the half-
power beam width. The beam pattern is generated using 
Bartlett weights, which translates into specific amplitude 
adjustments and phase shifts for each of the array elements.  

The practical operation process is based upon a simple 3-
stage mechanism:  

DOA Estimation 

After identification of the received signals as targets of 
interest, they are averaged over several sets of consecutive 
phase delays, and a beam that has the largest outcome is 
selected. Before the operation, we have a predetermined N 
set of spatial signatures corresponding to the fixed beams 
saved in the system. Each beam m has a specific spatial 

signature )(φna , n = 1, 2, …, N. For an m-element circular 
array, N may be chosen as qm, where q=1,2,…Q, with 
360°/Qm ≥ 1/10 of the beam width. The switched beam 
array output vector 

( ) )(...,,)( 21 tt H
Nn xaaaS =                                                    

where the superscript H is conjugate transpose. Assume 

there is only one target, when an )(* φna  is equal or very 

close to the signal spatial signature )(* φka , the nth element in 
output vector will be equal or very close to the signal 
strength received: 

( )T

nn Pt 0,......,0,0)( ≅S  
Thus the target is in the region of the nth beam. We will 

need to routinely update the DOA of the user. 

Beam switching algorithms will determine when a 
particular beam should be selected or rejected to maintain 
the highest quality signal. The system continuously updates 
beam selection to ensure the quality of the communication. 
The antenna system switches through the outputs of each 
beam and selects the beam with maximal signal strength as 

(1) 

(2)

(3) 

(4) 

(5) 

(6) 

(8) 
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well as suppressing interference arriving from the direction 
away from the active beam’s center.  

Beamforming (not implemented in this paper) 

This process is based on the knowledge of the direction of 
the target. Once the desired direction is known, the smart 
antenna system (described here mainly as a receiving 
antenna system) will choose one sector in active mode and a 
properly selected phase delay is applied. Thus the signal 
from that specific direction will have the maximal gain. The 
direction of the target is updated as required. In a TDD 
system where the uplink and downlink share the same 
carrier, we can design and keep a weight vector of the smart 
antenna system based on the spatial signature received at ith 

time slot such that 
*
ii aw =  for the downlink. At the jth slot, 

the signal received by the mobile user will be ( ) )(tsj
*
i aa , 

where ai and aj are normalized vectors. If the update rate is 
fast enough so that the relative change ≈ 0, the mobile user 
will receive maximal signal power.  However if the update 

rate is slow so that 
0* ≈ji aa

or the relative change ≈ 
100%, the mobile user will not receive any signal power.  In 
practice, we need to set a threshold to determine which 
beam should be active. For communicating with more than 
one user, and to save energy a beam will stay at a direction 
as long as possible. 

Update Tracking (not implemented in this paper) 

When there is only one target, this task is very simple 
since the target will not change its location dramatically (i.e. 
the direction of arrival from the desired target will not 
change much at moderate distances during the 

communication). Assume that at the time, beam m is 
chosen. To update, we may compare the signal strength 
from beam m and its neighbor beams: beam m-1 and beam 
m+1, and choose the strongest one as the updated beam. 
The tracking cycle is properly chosen so that the target will 
not travel out of the small range(between beam m-1 to beam 
m+1). When there are more mobile users, the 
communication system needs to have a table to record the 
location of each user. The table will update periodically. 

4. HARDWARE IMPLEMENTATION  
Figure 8 shows the block diagram for the custom VHDL 

FPGA hardware implementation of the DOA estimation and 
overall system control.  The A/D board was controlled by a 
driver running in the FPGA. The driver was written using 
custom VHDL and consists of two state machines. The first 
state machine controls the A/D converters and configures 
them to stream 8-bits offset binary samples out. This 
representation centers the signed numbers around (2n-1-1) 
where n is the number of bits (8-bits in our case) instead of 
0. The second state machine is responsible for 
synchronizing with A/D converters then receiving the 
samples from each of the channels serially through the 
differential lines. The state machine however is pulling 
these bits from all the channels simultaneously. Once the 
A/D converters are configured, they start streaming the data 
samples back to back synched by Frame Clock Output 
(FCO), which is running continuously. After receiving each 
frame of data (one sample), the driver stores these samples 
in a Dual Port Block Memory of size 1024x8bits that is 
embedded in the FPGA through one of its two ports. After 
the A/D driver completely acquires 1024 samples of data it 
performs three steps: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Block diagram of custom VHDL FPGA hardware. 
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1. Stops the A/D converters. 
2. Triggers a signal declaring the completion of the 

sampling process. 
3. Enters a standby mode waiting for a new request. 

Once the data is stored into memory, another process will 
be triggered to start the first step in the data analysis and the 
computations that will eventually determine the DOA.   

The first step in the DOA estimation is to compute the 
spatial spectrum of the incoming signal.  This is 
accomplished using an FFT module.  The FFT is performed 
on the data acquired by the analog-to-digital converter. The 
FFT computes 1024-point forward Discrete Fourier 
Transform (DFT) efficiently. The data is fed to the FFT by a 
9-bits signed real data which is formed by doing a sign 
extension of the samples that were originally stored in the 
1024x8 block memory. The output of the FFT is a 
combination of real and imaginary signed numbers each of 
them is 9-bits wide. Upon the completion of the FFT, the 
output is stored into a 1024x18 memory block where each 
word line contains the real part in the least significant bits 
and the imaginary part is stored in the most significant bits. 
Once the FFT module is done storing the data in memory, it 
triggers a Frequency Detection module and then enters a 
standby mode waiting for a wake up signal.  

The FFT core used was the Xilinx® LogiCORE™ IP Fast 
Fourier Transform.  This implementation takes advantage of 
the Cooley-Tukey FFT algorithm, an efficient method for 
calculating the Discrete Fourier Transform (DFT). The core 
was generated to perform 8-channels 1024-points FFT over 
the sampled data, where all the channels are running in 
parallel. The generated core was chosen to use the Radix-4 
decomposition for computing the Fourier spectrum analysis 
which consists of log4(N) stages, with each stage containing 
N/4 Radix-4 butterflies. N is the point size of the transform, 
an option that speeds up calculating the FFT since it needs 
only log4(N) stages, but uses more resources. As a result of 
using FX70T FPGA, the FFT implementation was able to 
take advantage of the XtremeDSP slice/Mult18x18 which 
are optimized to do certain mathematical operations such as 
multiply, multiply and accumulate (MAC), multiply add, 
etc...  Moreover, Xilinx core generator provides the option 
to generate a Fixed-Point or a Floating-Point 
implementation of FFT. In case of the Fixed-Point option, 
the user gets to choose what type of scaling to be used 
during the calculations. Scaling at each stage using a 
predefined fixed-scaling schedule was found to be the best 
option for this application.  

The Frequency Detection module searches the data stored 
in memory and finds the maximum magnitude by squaring 
the real and the imaginary parts then by adding them 
together, notice that since the objective of this process is to 
find the maximum, there is no need to calculate the square 
root, because the result of comparison will be the same in 
both cases, which reduces the computational time needed to 

complete the frequency detection part of the system. The 
objective of the frequency detection is to extract the FFT bin 
that contains the complex number denoting the amplitude 
gain and the phase shift of the carrier signal. It’s important 
to mention that the frequency detection is performed on one 
channel only. The complex representation of the other 
signals observed at the rest of the channels will exist at the 
same bin location of the FFT output. The reason it is 
preferable to be done this way rather than performing the 
search over all channels then grabbing the maximum of each 
channel which might occur in different locations, is that 
noise could affect the results of FFT and put the maximum 
of the signal at each channel in different bin locations. 
Therefore, we can still guarantee the relative phase shift 
between these signals will not be affected. In other words, 
the FFT bin location that contains the complex 
representation of the signal has to stay the same throughout 
all the channels regardless of noise, quantization error, or 
finite FFT length effect, simply because these 8-signals have 
the same frequency; they are different copies of the same 
wave signal. 

The frequency detection module is only performed on the 
first half of the FFT output since the magnitude of the FFT 
output is an even function, therefore, both first and second 
halves of the FFT magnitudes are identical. The frequency 
detection is implemented to perform three operation: 

1. Find the square of magnitude by squaring each of 
the real and imaginary parts of the first half of the 
FFT output, then sum them together. 

2. Compare the 512 magnitudes and find the 
maximum among them. 

3. Calculate the frequency of the signal by 
multiplying the bin location of the maximum 
magnitude by fs/1024, where fs is the sampling 
frequency (12.5 MHz). 

Since all of these operations are performed on fixed point 
data format, then the output will be in a larger size than the 
input. In case of multiplication the output equals twice the 
size of the input, and in case of addition the output will be 
one bit larger than the input. Therefore, these steps can 
either scale the output in order to be able to fit it using the 
same number of bits used to store the input, or perform 
these calculations without scaling the output of any of these 
operations, but instead accommodate the increase of bits by 
using a larger number of bits to represent the output which 
maintains precision.  The multipliers used to square the real 
and imaginary part of the FFT output implemented using 
DSP48E slices with one pipeline stage.  

The final step in the system is the DOA estimation.  This 
is accomplished by applying the Bartlett algorithm which 
computes the power of the original wave plane observed by 
the antenna elements by applying weights that realign the 
signals.  This is done until it finds the closest match to the 
original wave plane by observing the power of the signal 
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and choosing the set of weights that result in a maximum 
result.  Using the maximum bin found by the frequency 
detection block, the Bartlett algorithm, loads the complex 
representation of all eight signals by setting the address bus 
to the maximum bin.  It then loads the results into local 
registers to be multiplied by the weights matrix. The 
weights matrix is preloaded into a single port 64x9-bits 
block ROM. The weights themselves are calculated using 
Matlab and converted into a 9-bits signed fixed point 
representation. One complex multiplier is used to multiply 
the weights matrix by the signal vector.   The square of the 
magnitude of the output is calculated in order to do a 
comparison and find the maximum power and determine 
which sector in space the source of the signal is located at. 
All the operations done in this module are fixed point and 
expand the output registers as needed to accommodate the 
bit growth that occurs after each multiplication and addition.  
This results in a more accurate computation compared to 
scaling the outputs and also to floating point calculations in 
most cases.  This accuracy was deemed sufficient for this 
design but is being studied in subsequent work when noise 
is considered. 

This FFT cores are wrapped by a module that interfaces 
with other components in the system, such as, the sampler 
and the frequency detector. The main functionality of this 
module is to prepare the data and make it in a proper format 
for the FFT core by doing a sign extension and stream it in 
at the exact clock cycle when the generated core start 
reading the data bus. At the beginning of each FFT, the 
wrapper initializes the transform to perform a forward FFT 
transform, as well as setting the scheduling schedule to be 
{10 10 10 10 11}, which corresponds to a shift of 2 bits 
being performed after the first four stages of the FFT and a 
shift of 3 bits is performed at the last stage. This scheduling 
scheme completely avoids overflows in the Radix-4 
architecture. Subsequently, the wrapper triggers the FFT 
core and starts loading the data into it, and waits for the FFT 
calculations to be completed, then transfer the data 
generated by the core to a 1024x18 block of memory where 
the output will reside waiting for the next processing stage 
to recall it.  

5. SOFTWARE IMPLEMENTATION  
The second implementation technique evaluated in this 

work was using a MicroBlaze soft processor to compute the 
DOA estimation.  All of the sections of the DOA algorithm 
were implemented in software including the FFT in order to 
compare their performance to the custom VHDL 
implementation.  Figure 9 shows the flow chart for the 
software implementation. 

The software was coded using C++ language, which was 
compiled using the Software Development Kit (SDK) 
provided within the Xilinx Platform Studio (XPS). The 
software implementation performs the same functionality as 
the hardware implementation; it performs an FFT, 
frequency detection, and then calculates the DOA using 
Bartlett algorithm. In the software implementation, each 

component was implemented using both Floating Point and 
Fixed Point data representation whenever possible by 
converting the floating point number format into a fixed 
point integer format. 

 

 
 

Figure 9.  Flow chart for the software implementation of 
the DOA estimation. 
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The first step in the software implementation was to 
transfer the sampled data from the Block RAM to the 
MicroBlaze internal memory.  This was handled through a 
customized peripheral that creates registers in the 
MicroBlaze and maps them to the Block RAM.  This allows 
the data to be loaded by accessing the address register in 
MicroBlaze and loading the corresponding data that is 
mapped to the output of the Block RAM data port. 

The software FFT was implemented using an iterative 
approach to avoid recursion which could cause stack 
overflow due to the many function calls needed in the 
computation  The software algorithm required bit-reversal 
on the input addresses to rearrange data to a form that the 
iterative FFT algorithm could accept. The following pseudo-
code describes the bit-reversal algorithm:  

Pseudo Code 1: Bit reversal 
n  Length of FFT 
for k  0 to n - 1 
do A[rev(k)]  ak 

 

where rev(k) is a function that will reverse the bits of the 
binary representation of the integer k. For example, if k = 
(a3,a2,a1,a0)2 then rev(k) will return (a0,a1,a2,a3)2. 

Then FFT is then applied on the rearranged data. The 
following pseudo-code describes the iterative FFT 
implementation: 

Pseudo Code 2: Fast Fourier Transform 
n  Length of FFT 
for s  1 to log2n 
do m  2s 

ωm  e2πi/m 
for k  0 to n-1 by m 
do ω  1 

for j  0 to m/2 – 1 
do t  ω A[k + j + m/2] 
u  A[k + j] 
A[k + j]  u + t 
A[k + j + m/2]  u – t 
ω  ω ωm 

 
return A 

 
  This iterative FFT algorithm runs in time Θ(n log n), and 
the bit-reversal also requires Θ(n log n). 

The software implementation of the Frequency Detection 
algorithm is essentially the same as the hardware 
implementation. The only difference being that the software 
calculations were performed using both Fixed and Floating 
Point data while the hardware only used Fixed Point.  For 
Fixed Point, the calculations were scaled in order to prevent 
overflow due to having a fixed number of bits (32 bits when 
using an integer data type).  The following pseudo-code 
describes the implementation of frequency detection: 
 

Pseudo Code 3: Frequency Detection 
if current channel = 0 

n  Length of FFT 
max_bin  1 
fft_r  real(XK[1]) 
fft_i  imaginary(XK[1]) 
max_fft  fft_r2 + fft_i2 
for i = 2 to n/2 
do fft_r  real(XK[1]) 

fft_i  imaginary(XK[1]) 
current_fft  fft_r2 + fft_i2 
if current_fft > max_fft 

max_fft  current_fft 
max_bin  i  

  
return i 

 

where real() and imaginary() return the real and imaginary 
parts of a complex number respectively.  

After detecting the frequency the processor loads the 
complex representation of all eight signals by setting the 
address bus at all channels to point at the location of the 
maximum bin was detected at the first channel, then loads 
the data into a vector which will be used to do the matrix 
multiplication with the weights matrix. 

Bartlett algorithm was implemented twice using both 
Fixed Point number and Floating Point calculations. The 
following pseudo-code describes the software 
implementation of Bartlett algorithm where M is the number 
of antenna elements, S is the number of sectors the space is 
divided into. X a vector holding the complex representation 
of the signals coming from all 8-channels, and W is the 
weights matrix.  
 

Pseudo Code 4: Bartlett Algorithm 
Pwr  empty 8x1 vector 

for j  0 to M - 1 
do for k  0 to S - 1 

do Pwr[j]  Pwr[j] + X[j]*W[J,k]; 
angle  0 
max_pwr  magnitude(pwr[0]); 
for j  1 to M - 1 
do if magnitude(pwr[j]) > max_pwr 

angle  j; 
max_pwr  magnitude(pwr[j]) 

return angle 

 
6. PERFORMANCE COMPARISON  

Table I shows the performance comparison between the 
custom VHDL implementation and the software 
implementation using the MicroBlaze processor.  The time 
for each of the major tasks within the algorithm are listed 
for both the HW and SW implementations in addition to the 
corresponding resource usage on the FPGA.  The resource 
usage for the MicroBlaze processors is fixed since a single 
soft processor was used to implement all of the algorithm in 
software.  Where applicable, both fixed point and floating 
point computations were implemented to investigate the 
impact on resources for each calculation approach. 

This table shows the dramatic performance improvement 
that custom VHDL hardware gives the system.  The most 
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significant performance improvement comes in the FFT 
calculation with the custom VHDL performing 3,000 times 
faster than the software implementation when comparing a 
single FFT operation.  Area usage is considerably less when 
using the MicroBlaze soft processor due to using a single 
fixed resource.  Engineering development time is another 
important consideration when investigating effective 
HW/SW partitioning.  The hardware implementation took 
12 months to implement by a full time graduate student at 
MSU compared to 3 months for the software 
implementation. 

7. CONCLUSION 
This paper presented the design and implementation of a 

Bartlett DOA estimation using FPGA hardware.  The 
algorithm was implemented using both full custom VHDL 
and in software using a MicroBlaze soft processor.  A 
dramatic improvement in performance was observed in the 

hardware implementation compared to the software 
approach (3,000 times faster) while area consumption was 
less for the soft processor approach.  The development time 
for the hardware implementation was approximately 4 times 
greater compared to the software approach.  The analysis 
presented in this work can provide insight into the most 
effective partitioning between hardware and software.  The 
performance analysis of each block within the system can 
lead to an effective hybrid approach.  Noise was not 
considered in this paper but is being included in subsequent 
work based on the framework described in this paper to 
study the impact on system performance and the choice of 
architecture. 
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Latency (μs) Resources Estimation 

Slices Slice Register LUTs LUTRAM 
XtremeDSP 

Slices 
18K Block 

Ram 

 
 
 
 

HW SW 
HW SC HW SC HW SC HW SC HW SC HW SC 

FFT                             

Fixed Pt                             

    - Serial 274.5 838600 NA   NA   NA   NA   9   7   

    - Parallel 34.31 104825 3347   10172   7434   1147   72   20   

 Floating Pt                             

    - Serial 357.84 608,800 NA   NA   NA   NA   24   18   

    - Parallel** 44.73 75880 NA   NA   NA   NA   192   144   

Freq Det                             

- Fixed Pt 10.3 1007 15   27   18   0   2   0   

- Floating Pt NA 751 NA   NA   NA   NA   NA   NA   

Bartlett                             

- Fixed Pt 1.73 310.4 58   200   165   0   0   0   

- Floating Pt NA 244.4 NA   NA   NA   NA   NA   NA   
MicroBlaze   684,000   1494   2172   2349   69   5   64 

TABLE I 
PERFORMANCE SUMMARY FOR THE BARTLETT DOA ESTIMATION COMPARING CUSTOM VHDL HARDWARE TO THE SOFTWARE IMPLEMENTATION 
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