
RadPC: A Novel Single-Event Upset Mitigation Strategy for
Field Programmable Gate Array–Based Space Computing

Christopher M. Major,∗ Annie Bachman,† Colter Barney,† Skylar Tamke,‡ and Brock J. LaMeres§

Montana State University, Bozeman, Montana 59715

https://doi.org/10.2514/1.I010859

This paper presents a computer architecture with the ability to respond to radiation-induced faults. The

architecture presented advances the state-of-the-art by implementing a redundant multiprocessor system on a

commercial-off-the-shelf field programmable gate array. The system, called RadPC, can respond to radiation-

induced faults and undergo repairs as necessary. A reliability analysis is conducted using Markov chain models to

characterize the architecture’s ability to continue performance despite faults. Further analysis regarding expected

radiation exposure is provided for runtime context of the architecture.

Nomenclature

p = probability of failure
R = reliability
T = transition matrix
α = rate of context switch, s−1

λ = radiation induced fault rate, s−1

μ = repair rate, s−1

I. Introduction

C OMPUTING systems operating on the surface of the Earth run
without concern of the harsh radiation environments found in

space. However, computing systems for space science and space
exploration missions do not have the same luxury. Space computers
suffer from the unwanted effects of cosmic energy, unlike the billions
of computers and embedded systems in use throughout the world,
which are effectively shielded from energized particles by the Earth’s
atmosphere and magnetic field. No such protection is guaranteed for
computers outside of the planet’s protective radiation shielding [1].
The demand for data processing in space science has become more
apparent as the complexity of exploration systems increases, and thus
the need for radiation-responsive features has become an area of
concern.
There are two classes of space radiation effects on computing

platforms: single-event effects (SEE) and total ionizing doses (TIDs)
[2]. A single-event upset (SEU) occurs when high-energy particles or
heavy ions strike a complementary metal oxide semiconductor
(CMOS) device and cause unintended, logic-level transitions—an
essentially instantaneous impact on performance. Such transitions
can be divided into three subcategories, depending on their effects
within the fabric. A single-event transient (SET) occurs when an
energized particle changes the voltage of a logic line and therefore
changes its logic value. When such a change is stored in a memory
device, such as a latching circuit or a D-Flip Flop, an SEU has
occurred. Each of these event types can often be corrected with a
reset, but if an event causes such malfunction that further counterac-

tive measures such as power cycling the entire system must be taken,
the event is classified as a single-event functional interrupt (SEFI).
ATID occurs when lower-energy particles strike a CMOS device

and cause physical damage. This ismanifested as trapped charges left
inside the insulating layers of a CMOS transistor lock the device into
a perpetual on or off state, allowing for continuous and uninterrupted
current draw.This results in large power drawby the part, interference
with the device’s tasks, and the eventual material degradation of the
device over time. Where SEEs are momentary, TIDs are gradual and
demonstrate cumulative effects that are measured as the amount of
energy per unit of mass trapped in the material [3].
In modern integrated circuit design (<65 nm), TID is becoming

more andmore statistically unlikely to occur due to feature sizes with
small process nodes [4]. While the smaller feature sizes are reducing
the possibility of damage due to trapped charge, the probability of
functionality interruption caused by high-energy particles is drasti-
cally increased. Thus, the need to mitigate the damaging effects from
SEEs becomes of greater concern than TID in modern computing
systems. This need increases in importance considering the trend
toward shorter mission lifetimes (i.e., small satellites), where the
computers are not in space long enough to accumulate TID damage.
In this paper, we propose and detail a radiation tolerant computer

system called RadPC, which is designed to respond to the effects of
SEUs. We describe an architecture that uses redundant processors
configured in N-modular redundancy on a commercial-off-the-shelf
(COTS) field programmable gate array (FPGA). Detection and repair
of SEU-induced faults are accomplished through a comprehensive
strategy including partial reconfiguration (PR) of impacted cores,
error correction codes (ECC) for memory that cannot be partially
reconfigured, and soft error mitigation monitoring for the configura-
tionmemory of the FPGA.We also provide amodeled analysis of the
fault-tolerance of RadPC regarding times needed for reconfiguration
of the system to flush out SEUs.

II. Motivation

A. Existing TID Mitigation Strategies

As radiation-based faults are a great concern to spaceflight hard-
ware, there currently exist various methods intended to prevent or
mitigate their effects. A basic solution for TID mitigation is the
concept of shielding, in which some sort of material serves as a
boundary between cosmic radiation and the hardware at risk. Within
many ground-based nuclear facilities, shielding is required for device
and personnel protection and is implemented with little concern as to
the geometry needed for protection.
In the case of spaceflight hardware, however, themass and volume

of a component can greatly impact the cost-effectiveness of the
mission to detrimental levels as these metrics directly drive the costs
for launch service. The thickness of a shield or the density of a
material increases as the radiation dosage levels decrease, thus dra-
matically increasing the costs needed to transport said hardware into
space [5]. Thus, shielding may succeed in protecting a device from

Received 20May 2020; revision received 18 December 2020; accepted for
publication 22 February 2021; published online 29March 2021. Copyright ©
2021 by the American Institute of Aeronautics and Astronautics, Inc. All
rights reserved. All requests for copying and permission to reprint should be
submitted to CCC at www.copyright.com; employ the eISSN 2327-3097 to
initiate your request. See also AIAA Rights and Permissions www.aiaa.org/
randp.

*Graduate Research Assistant, Electrical and Computer Engineering
Department, 324 Norm Asbjornson Hall.

†Undergraduate Research Assistant, Electrical and Computer Engineering
Department, 324 Norm Asbjornson Hall.

‡Research Engineer, Space Science and Engineering Laboratory, Cobleigh
Hall.

§Professor, Electrical andComputer EngineeringDepartment, 316-CNorm
Asbjornson Hall. Member AIAA (Corresponding Author).

Article in Advance / 1

JOURNAL OF AEROSPACE INFORMATION SYSTEMS

D
ow

nl
oa

de
d 

by
 B

ro
ck

 L
aM

er
es

 o
n 

A
pr

il 
5,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
08

59
 

https://doi.org/10.2514/1.I010859
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.I010859&domain=pdf&date_stamp=2021-04-02


TIDs but is likely to be ineffective in protection from SEEs when
considering the cost and mass need to prevent secondary radiation.
Radiation-hardened semiconductor manufacturing modifications

are another method of mitigating radiation-induced faults in system
hardware [6]. One such technique, known as radiation hardened by
design (RHBD), mitigates TIDs by using nonstandard layout tech-
niques to reduce the probability of low-energy particles depositing
charge within a device’s insulating components. This is accom-
plished through techniques such as triple modular redundancy
(TMR) implementation, enclosed-layout transistors (ELTs), and
guard rings—elements designed to reroute the flow of low-energy
particle charge through safer routes so as not to compromise the
device’s performance [7]. Additional components for error detection
and correction in memory are often used in such designs to maintain
data integrity [8].
Another technique to mitigate TID is known as radiation hardened

by process (RHBP). RHBP is a practice that uses nonstandard
materials during fabrication to reduce the susceptibility probability
of trapped charges. In doing so, defects areminimized in the substrate
and oxide layers of the semiconductors, thus reducing the probability
of radiation-induced electron/hole pairs in the material [9].
Systems designed with RHBD and RHBP techniques, however,

require larger circuit surface area and therefore experience poorer
power efficiency, speed, andperformance than standard, commercially
manufactured systems. Their dedicated manufacturing processes,
combined with the relatively low market demand in comparison with
commercial processes, greatly increase the costs of device production.
Device performance is also greatly inhibited by these constraints,
as RHBP-developed hardware tends to lag commercially developed
equivalents by at least a decade [10].

B. Existing SEE Mitigation Strategies

Tomitigate SEEs, one commonly used technique is TMR. TMR is
an approach in which a logic circuit is triplicated with identical
implementations. Each circuit’s output feeds into a voter device that
determines the correct value of the original circuit through selection
by majority. This strategy seeks to mitigate the effects of SEEs
by providing the ability to continue operation in the presence of an
SEE-induced fault [11]. TMR requires additional area and compo-
nents for proper implementation, increasing costs, power, and design
complexity. Additional overhead is needed for proper voter perfor-
mance in the system. A block diagram demonstrating the basic
structure of a TMR system is shown in Fig. 1.
Memory in computing systems is uniquely susceptible to SEEs

due to the high layout density and large area requirements on the
substrate.Memory typically occupies the largest area on the substrate
in a computing system. This limits the use of TMR and/or RHBD
techniques prohibitive from an area-usage standpoint. The most
common techniques to mitigate errors in memory used for data are
error correction codes [8].
For memory that is used for program information or configuration

data, a technique known as memory scrubbing is often used to
mitigate the effects of SEEs. This is accomplished by using a device
in hardware or a process in software to periodically iterate through the
contents of a memory device and check their values against expected
values. Blind scrubbing overwrites the memory cell regardless of
whether an error occurred. Readback scrubbing detects if there is any
discrepancy, then overwrites the faulty data with good data [12].
Scrubbing has been demonstrated as an effective technique for

increasing system reliability and ensuring data integrity. Scrubbing
is a common technique for mitigating SEUs in the configuration
memory of FPGAs. Faults in the configuration memory of an FPGA
represent faults that cannot be repaired using normal reset proce-
dures, and thus they are considered a SEFI.

C. Our Contribution

Our work contributes to the field of space computing by providing a
cost-effective, radiation tolerantdesignusing acommercial-off-the-shelf
FPGA to actively respond to radiation-induced faults in the device.
Instead of attempting to impede radiation-induced faults, our design
seeks to mitigate their effects as a radiation-tolerant computer
system. As advances in semiconductor manufacturing technology
have led to decreased gate oxide thicknesses, reducing the possibil-
ity of trapped charges fromTID at processes of 45 nm or smaller [4],
our choice of a modern, commercial FPGA has a lower probability
of sustaining damage from low-energy particles. Our strategy
implements a redundant, multiprocessor system, a background
configuration memory scrubber, and data memory error correction
codes tomitigate the effects of SEEs. Our approach has the potential
to increase the reliability of space computers while simultaneously
reducing the cost, compared with existing systems that exploit
RHBD/RHBP techniques.

III. System Design

The architecture of RadPC adapts the strategies of TMR and
memory scrubbing by taking advantage of the configuration proper-
ties of FPGAs. An FPGA implements digital logic by arranging logic
elements according to a design bitstream loaded into its configuration
memory. When power is turned on, the device configures all logic,
interconnects, inputs, and outputs according to this bitstream. This is
known as full configuration. FPGAs provide the flexibility that any
design can be implemented and synthesized into an FPGA bitstream.
Originally, this capability afforded a unique environment for proto-
typing. Recently FPGA performance has reached a level that makes
implementation in a final system practical. In our work, we exploit
the reconfigurability of FPGAs to dynamically repair and recover
from faults.
If correctly enabled by the designer, an FPGA can select a pre-

defined subset of the hardware and reconfigure it with a different
design. This is known as partial reconfiguration (PR). In PR, a partial
bitstream is loaded into a select section of configuration memory to
drive this change in logic. This section is often referred to as a “PR
region” of the FPGA fabric. Two methods of PR are often used in
FPGA design, depending on the state of the device during the
process. When the device is shut down or inactive and a partial
bitstream is loaded, static PR has occurred. When the device is
currently performing its designated task without power cycling or
suspending activity outside the PR region, active PR has occurred
[13]. PR has a unique role in our FPGA-based SEE mitigation
strategy. When a fault occurs in either the foreground circuitry of
the FPGA or in the configuration memory region corresponding to
the foreground circuitry, PR will restore that region to its original
state. This effectively repairs the fault caused by the SEE [14,15].
A design approach can be used that divides the system into various
PR regions and incorporates PR as part of the fault-mitigation strat-
egy. This does lead to synchronization issues that must be addressed,
which will be covered later.
Our design employs a variety of fault-mitigation strategies based

on a redundantmultiprocessor system implementedwithin the FPGA
fabric. Figure 2 demonstrates the general layout of this design.

A. Fault Mitigation Strategy

Four parallel processors, denoted as “tiles,” are designated as PR
regions and run identical software. This system extends the capability
of TMR to continue operation in the presence of a fault. TMR can
withstand one fault in the triad and still produce the intended output.
However, when the fault occurs due to an SEU of SEFI, the system
needs to stop foreground operation and restore the faulted system.
In FPGA-based computer systems, this typically means eitherFig. 1 Block diagram of a TMR system.

2 Article in Advance / MAJOR ETAL.

D
ow

nl
oa

de
d 

by
 B

ro
ck

 L
aM

er
es

 o
n 

A
pr

il 
5,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
08

59
 



reconfiguring the entire FPGA or scrubbing the entire configuration
memory array. The significant downtime associated with repairing
the faulty member of the triad reduces the reliability of the system for
two reasons. First, the time associatedwith full reconfiguration or full
scrubbing of the computer system dramatically reduces the avail-
ability of the system. Second, the system is still vulnerable to radi-
ation strikes while performing the repair. If a second strike occurs
during repair, the system is put into a state that cannot be recovered
from. In our prior work, we discovered that increasing the number of
redundant members in the system (N) reduces the possibility of a
subsequence radiation strike putting the system into an unrecoverable
state [16]. Our prior work also showed that themost gain in reliability
was achieved with a four-member system, called “4MR.” Adding
moremembers beyond four did not result in any significant reliability
gains because the additional circuit area that was added was also
susceptible to radiation strikes, so there was diminishing returns.
Thus, a four-modular redundant (4MR) system is optimal.
Additionally, the use of PR to repair a faulty tile provides a much

faster recovery process than a full FPGA reconfiguration.As tasks are
completed by each tile, any output results are fed into a voter circuit
and analyzed for discrepancy by majority vote. If a tile shows an
incorrect value, it is partially reconfigured to flush out the SEU(s) in
its PR region. When this occurs, the remaining tiles continue to
proceed with the next software task.
After the faulty tile is partially reconfigured, it is ready to be

reintroduced into the voting system. To synchronize the repaired tile
with the other three, a software checkpoint system is used. A check-
point bus is implemented between the four tiles that indicates if
another tile has been faulted. Code is entered into the software at
desired points that will allow the processor to stop execution of the
main program andwait for the partially reconfigured tile to synchron-
ize. The locations of the software checkpoints are at the discretion of
the developer in order to provide the ability to prioritize critical code
execution over synchronizing the repaired PR tile. For mission
critical software, the synchronization can wait until there is a break
in important execution.
The voter implements additional functionality to serve as the

arbitrator of the checkpointing to ensure data integrity and synchro-
nization. The voter observes a register known as the “checkpoint”
register, where each tilewill set a flagwhen it has finished executing a
given portion of the program. When all four tiles have set their
checkpoint flags, the voter receives output data from each of the tiles
and checks their values. If these values are all equal, the voter will
signal the tiles to continue to the next stage of the program. If these
values are not equal, the voter will signal the memory correction
component to activate and correct any erroneousmemory cells before
letting the tiles resume the program.
Each tile accesses an on-FPGAmemory block for its datamemory.

On an FPGA, the user memory is implemented with SRAM technol-
ogy, which is not impacted by a full or PR. This is advantageous from

an operational standpoint because the data are not altered during a
PR; however, additional fault mitigation must be included in the
system to protect the data memory. In our system, each data memory
block employs an ECC system to detect and correct faults that may
have occurred in the SRAM cells. Each memory device consists of a
data encoder, amemory device, and a data decoder.When a tilewrites
to this memory device, the data are encoded from an 8-bit format to a
12-bit format. This is accomplished using aHamming encoder device
to add four error correction code bits, which are used in the decoding
process to evaluate possible data corruption. When a tile reads from
the memory device, the data from the memory device are decoded
from a 12-bit format into an 8-bit format. This is accomplished using
a Hamming decoder device to check the consistency between the
error correction bits and the original data, then attempts to correct any
errors present before letting the tile general purpose input/output
(GPIO) read the value.
Although the ECCs handle correcting any radiation-induced faults

in the data memory, they do not have the ability to synchronize the
contents with the other three memory blocks in the event of a tile PR.
To handle this, a memory correction system is implemented. The
encoded data from each tile is stored in a dual port read/writememory
unit. One port is dedicated to tile use; the other is used for the separate
memory correction component. The memory correction component
accesses a tile’s memory block’s second port, bypassing the Ham-
ming encoder and decoder to directly assess the memory contents.
It then evaluates the contents of all four memory units simultane-
ously, comparing them to see which value is inconsistent with the
others. If a value is inconsistent, it will be rewritten with the majority
value of its neighboring units at that address.
For SEUs that occur outside the FPGA fabric designating a tile, a

soft error mitigation (SEM) controller is used as the configuration
readback memory scrubber [17]. This is a Xilinx-provided IP, con-
nected to the ICAP primitive and a UART communication port, that
uses error correction codes within the Artix-7 configuration memory
to check for single-bit and double-bit adjacent upsets. The controller
runs perpetually, independent of the tiles, memory, and voter, to
monitor and scrub errors in background operation. When a PR on a
tile is performed, the SEM controller is temporarily deactivated to
avoid error correction conflicts. Upon completion of the PR, a soft-
ware reset command is sent to the SEM controller and its monitoring
process continues.
To protect the configuration memory itself from faults, a readback

memory scrubber can be used. Using the memory’s error correction
codes and frame address register (FAR), a scrubber can iterate
through the memory frame by frame and check the contents for
single-bit or adjacent double-bit errors [18]. In the event of an error,
the scrubber replaces the faulty bits in memory and resumes oper-
ation. If a scrubber is used alongside a PR strategy, an arbitration
system is necessary to prevent interference between the two systems.
The Xilinx FPGA provides a built-in configuration memory repair
system called an SEM block. This is implemented on our system.

B. Unrecoverable Faults

In any system, therewill be faults fromwhich the system cannot be
recovered. In our system, multiple faults occurring simultaneously
can prevent successful recovery, as majority-based voting strategies
can fail to select the correct values based on expected values. Our
design is based on the premise that fault recovery is implemented on
high probability faults and lower probability faults represent infre-
quent events that require either a full FPGA configuration or a full
system power cycle to mitigate their effects.

C. Fault Mitigation Summary

Table 1 summarizes the range of possible faults, fault-mitigation
strategies, and probability of risk.

D. Implementation

This architecturewas prototyped on a Basys 3 development board,
produced by Digilent. This board features an Artix-7 XC7A35T
CGP326-1, a low-power, low-cost device available for purchase from

Fig. 2 Block diagram of RadPC architecture.

Article in Advance / MAJOR ETAL. 3

D
ow

nl
oa

de
d 

by
 B

ro
ck

 L
aM

er
es

 o
n 

A
pr

il 
5,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
08

59
 



Xilinx [19]. The hardware design was developed using the Vivado
2019.2 design suite, and the software to be implemented for demon-
stration was developed using Xilinx’s Vitis development suite.
Each tile consists of a XilinxMicroBlaze softcore processor, 8 KB

of programmemory, four GPIO devices with two channels each, and
a processor reset system. A single program runs on the MicroBlaze,
using the GPIO to access an input register, a memory device, the
Voter system, and the Checkpoint register. All these components
are contained in a Vivado constraints file and wrapped in a hardware
wrapper to allow for instantiation in the top-level VHDL file.
The tiles are denoted as TILE_00, TILE_01, TILE_02, and TILE_03.
Each tile has a corresponding partial bitstream, which can be used

to reset the FPGA fabric in the predefined tile region and bring the
processor and its connected components back online. The memory,
voter, checkpoint register, and all other external components are not
affected by this reconfiguration. Though a reconfigured tile may lag
the other tiles in its program’s progress, the checkpoint system
ensures that the other tiles will not advance in the program until the
affected tile can catch up.

IV. Characterization

The reliability of this system depends on the amount of time that
the various aspects of recovery take in addition to the predicted rate of
incoming faults. This drives the system’s availability and mean time
to failure (MTTF), but is also dependent on the environment that the
computer resides in. The first step is determining the time of the repair
strategies in this computer.
Measurements regarding the time needed to perform full configu-

ration and PRs of the device were made by measuring the DONE pin
of the Basys 3 board using an oscilloscope. According to Xilinx’s
7-Series FPGA configuration guides, the DONE pin asserts when a
full configuration is completed or when a PR is completed. Thus, this
signal was used to evaluate the speeds of both methods.
A full reconfiguration of the system, using the top-level bitstream,

takes an average of 1.24 s to complete. This test was conducted using
the joint test action group (JTAG) configuration port to load a
17,536,096 bit configuration bitstream into the FPGA. According to
Vivado’s bitstream generation reports, 2,793,730 of the 14,663,584
bits of configuration memory, or 19.05%, are classified as “essential
bits” that are prioritized in the SEM controller’s operation.
The PR of a tilewill alter its completion time, depending on the tile

to be reconfigured. This is due to the floor planning conducted to
allow for the generation of a partial bitstream for each tile, as the
XC7A35T has limited fabric space for the positioning of “PBlocks”
assigned to various components of the design. Thus, all four tiles
differ in position, number of logic elements per PBlock, size, and
accessibility to clock and reset lines. PR of a RadPC tile, therefore,
ranges between averages of 217 and 434ms. Specifically, Tile 0 takes
an average of 217 ms to be reconfigured, Tile 1 takes an average of
434ms, Tile 2 takes an average of 404ms, and Tile 3 takes an average
of 217 ms.
Faster configuration times can be obtained by using a different

programming interface to the FPGA such as slave serial. For our
prototype, the slave serial buswas not connected on theBasys 3 board
so it could not be empirically measured. However, an assumption can
bemade that the ratio of PR to full configurationwill remain the same
when moving from JTAG to slave serial. This ratio for the largest PR

is 35% (i.e., 434 ms∕1.24 s). Calculating the amount of time that
a slave serial configuration takes, it was determined that a full
configuration will take 1.101 s and a worst-case PR will take
418 ms [20,21].
Per Vivado’s utilization reports and the available resources on the

Artix-7 XC7A35T chip, 12,882 Slice Registers out of 41,600
(30.97%) and 12,068 Slice LUTS out of 20,800 (58.02%) are used
in the design, and 23 Block RAMTiles out of the available 50 (46%)
are likewise used. Vivado’s timing summary reports that the worst
slack for the setup time in the design is 23.790 ns and the worst pulse
width slack time is 15.250 ns.
Vivado’s power report estimates a total on-chip power of

0.102 W, with dynamic power accounting for 0.029 W and device
static accounting for the other 0.073 W. A junction temperature of
25.5°C was specified in the report. This does not account for I/O
power on the Basys board itself, merely representing an estimate of
the FPGA device itself.

V. Reliability Analysis

A. Markov Chain Models

To estimate the reliability of the proposed architecture, Markov
chain models are used [16]. Markov models are used to model a
system using state diagrams, linked together by probabilities
describing the likelihood of a transition from one state to another.
As such, they assume that, in their most basic form, a transition to
another state relies only on the current state of the system [22].
This principle makes them a useful tool for analyzing system
reliability. The Markov model will transition to a new state upon
a fault in the computer. Since not every radiation strikewill cause a
fault in the computer system, the fault rate fed into the Markov
model is scaled down to a value that considers the essential bits on
the FPGA (i.e., those that represent implemented circuitry) and a
derating for the type of system implement (i.e., 30% for a micro-
processor) [23].
In a Markov chain model, a system is represented by a transition

matrix of size (m, n), where each entry represents the probability of
transitioning from statem to state n. In the example of a simple two-
state system with states S0 and S1, the transitions can be represented
with a 2 × 2matrix filled with a probability of each transition in each
entry, where λ represents the fault rate of the system. Figure 3
demonstrates this model as a state diagram. This model represents
a simplex computer system where state S0 represents an operational
system and state S1 represents a faulted system.
For a general state diagram with s states, a transition matrix T of

sizeS×S can be created to represent the probability of all transitions t
from one state m to another state n, as shown in Eq. (1):

Fig. 3 Simple two-state Markov chain model diagram.

Table 1 Fault mitigation strategies for upsets in RadPC

Fault condition Observed by Action taken Fault severity Fault possibility

SEU in tile foreground circuitry Voter PR the effected tile Medium Medium
SEU in non-tile foreground circuitry Voter Full FPGA reconfiguration High Low
Single-bit error in on-FPGA data memory ECC Automatic data recovery by ECC decoder Low Medium
Multibit error in on-FPGA data memory Voter Overwrite corrupted data memory with

values from healthy data memory
Medium Low

Single-bit error in FPGA configuration memory SEM Automatic correction Low High
Double-bit adjacent error in FPGA configuration memory SEM Automatic correction Low Medium
Multibit, nonadjacent error in FPGA configuration memory SEM Full FPGA reconfiguration High Low

4 Article in Advance / MAJOR ETAL.

D
ow

nl
oa

de
d 

by
 B

ro
ck

 L
aM

er
es

 o
n 

A
pr

il 
5,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
08

59
 



T�m; n� �
2
4 t1;1 : : : t1;n

: : : : : : : : :
tm;1 : : : tm;n

3
5 (1)

To calculate the probabilityp of being in a state S given a time step
k, the following equation must be used:

ps�t � kΔt� �
�
p0�0� : : : pn�0�

�
⋅

2
4 t1;1 : : : t1;n

: : : : : : : : :
tm;1 : : : tm;n

3
5

k

(2)

In the case of the two-state diagram in Fig. 3, assume that S0
represents a state of healthy device operation and S1 represents a state
of faulty or failed device operation. The transition matrix T of this
model is

T�m; n� �
�
1 − λΔt λΔt

0 1

�
(3)

The probability of residing in state S after a time step k,ps, is given
by

ps�t � kΔt� �
�
p0�0�; p1�0�

�
⋅
�
1 − λΔt λΔt

0 1

�
k

(4)

The reliability is calculated by the following:

R�t� � 1 − ps�t � kΔt� (5)

As the performance analysis of RadPC hinges on its reliability, the
MTTFmust be considered. This is defined as the point in timetwhen
the reliability of the system R�t� � 0.5.
In the case of RadPC, there are more states to reflect the various

capabilities and safeguards in the system. For example, a TMR
system can be modeled with three states [16]. State S0 represents
an operational system where none of the three tiles have radiation-
induced faults. State S1 represents the situation where one tile of the
triad has been faulted.Note that the system is still operational because
two of the three tiles are operational. State S2 represents a faulted
systembecause two of the three tiles have been faulted and the system
can no longer determine the correct output. Figure 4 demonstrates the
state diagram used to represent a TMR system as a Markov
chain model.
The transition matrix of this system is as follows:

T�m; n� �
2
4 1–3λΔt 3λΔt 0

0 1–2λΔt 2λΔt
0 0 1

3
5 (6)

The probability of an operation TMR system is given as the
product of their individual reliabilities, as follows:

R�t� � R3�t� � 3R2�t� ⋅ �1 − R�t�� (7)

R�t� � 3R2�t� − R3�t� (8)

ATMR-based system alone, however, has no option of returning to
the initial, fully operational state and therefore reduces the reliability
of the system. Thus, the option to repair a tile through PR or SEM
must be represented in the state diagram. This can be referred to as a
TMR + Spare system. The repair rate of the tile is represented as a

parameter μ, which can be determined as the worst-case number of
repairs per second. Based on the performance of the Basys 3 board,
the repair rate was found to be μ � 437 ms. Figure 5 demonstrates
the new state diagram, including the PR/SEM recovery methods.
To further increase the reliability of the system, a fourth tile is used

inRadPC [16]. This results in a 4MRsystem,where the additional tile
allows two faults to occur in the system without faulting the system.
An assumption is made that in the event of two faults, the two
damaged tiles will not produce the same, yet inaccurate, output. As
before, S0 indicates a healthy and fully operational state. If an
operating tile is damaged, the system transitions to S1 and must
undergo repairs. The faulty tile is disregarded in the vote process
until it is brought back into operation. This is represented in S2. If the
faulty tile cannot be repaired, the system can proceed in S3 until
repairs are made. Only when a system has experienced two unrecov-
erable faults, the transition to S4 is made, in which system failure is
experienced entirely. Figure 6 demonstrates this behavior as a new
state diagram.
The difference between a 4MR system and a TMR + Spare system

is in the treatment of the “spare tile.” In a 4MR system, the spare
actively runs the same program as its neighbors and is considered a
valid vote in the overall architecture. When an error occurs in any of
the tiles, PR is conducted immediately without swapping in new
components, as in the previous TMR + Spare system. The voter will
then track any faults in the running tiles and perform the repairs as
necessary, including memory scrubbing if necessary.
A comparison between architectures was performed in order to

verify that the RadPC architecture using four tiles with repair is
significantly more reliable than simplex, TMR, and TMRwith repair
approaches. The graph in Fig. 7, plotted by running the Markov
model transition matrices through a MATLAB script, demonstrates
the exponential reliability curve for the different system architec-
tures. For this comparison, a value of μ � 437 ms was used and
represents the slowest PR time (i.e., Tile 1). A fault rate of λ � 0.001
[SEU/ μs] was used in all systems and was chosen arbitrarily.
The plots indicate the increase in reliability when additional

features are implemented alongside a basic TMR design. With a
singular, or “simplex” system, or an unprotected TMR system, the
reliability decays at an exponential rate and provides little to no
assurance of system longevity. With a TMR system protected by a
scrubbing mechanism, be that the SEM or PR, the reliability drops at
a far slower linear rate. Including a spare tile to be included in the
TMR + Spare system dramatically decreases the rate of reliability
decreases and therefore provides the best system longevity of all
possible combinations. Thus, it can be seen that the 4MR system
provides the best reliability of all aforementioned systems. It is left to
the discretion of a mission planner to consider the range of radiation
environments in which RadPC would be exposed, and to assess

Fig. 4 Markov chain model state diagram for a TMR system.

Fig. 5 Markov chain model state diagram for a TMR + PR + SEM

system.

Fig. 6 Markov chain model state diagram for a TMR + PR + SEM +

spare tile System.

Article in Advance / MAJOR ETAL. 5

D
ow

nl
oa

de
d 

by
 B

ro
ck

 L
aM

er
es

 o
n 

A
pr

il 
5,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
08

59
 



whether an environment’s expected fault rate would warrant full
reconfiguration of the device.

B. CREME96 Analysis

To characterize the radiation environments in which RadPCwould
be exposed, a numerical modeling tool known as the Cosmic Ray
Effects onMicro-Electronics code (CREME96)was used [24].Given
the dimensions of the Artix-7 XC7A35T chip and the essential bit
count provided by the Vivado software suite, a series of estimates
were given to predict the levels of direct ionization-induced SEEs the
system would experience. Table 2 displays the results of the ISS-
environment and lunar-environment analyses. Accounting for the
essential bits in the system and the derating for a microprocessor,
these fault rates are scaled down by a factor of 0.3. The resulting
figures are shown in Table 3.
Generally, the average and peak fault rates are relatively small and

do not present a significant risk to the system. Aworst-case scenario
analysis, however, proves more useful in evaluating the limits of the

system.Thus, a scriptwaswritten inMATLAB to plot themean-time-
to-failure as opposed to fault rate, shown in Fig. 8.
The percentage increase in improvement of each of these architec-

tures, in comparison to the simplex architecture, is shown in Table 4.
The plot and table demonstrate that the architecture that best

retains its reliability as the fault rate increases is the 4MR system,
given the repair rate μ � 437 ms. Even in the extreme cases of the
ISS-orbit and lunar-orbit environments, it performs significantly
better than the simplex and TMR architectures in maintaining reli-
ability.As previous iterations ofRadPChave been experimentedwith
varying numbers of tiles, it has been found that the gains of additional
redundant tiles diminish shortly after adding one. Thus, it can be
concluded that the 4MR system is the most optimal architecture of
those discussed in this paper.

VI. Discussion

Several considerations are to be taken into account regarding the
performance of the RadPC system. As the software synchronization

Fig. 7 Exponential reliability curve for four-tile RadPC system with repair capability.

Table 2 CREME96 modeling of ISS-orbit and lunar-orbit radiation environments

Essential bits analysis (2,793,730) Total bits analysis (14,663,584)

Lunar environment, average conditions Device/day Lunar environment, average conditions Device/day
Average 1.969 Average 10.336
Peak 5.463 Peak 28.676
Lunar environment, inside Earth’s
magnetosphere, worst-case scenarios

Device/day Lunar environment, inside Earth’s
magnetosphere, worst-case scenarios

Device/day

Worst week 166,696.000 Worst week 874,944.000
Worst day 910,118.000 Worst day 4,776,980.000
Worst 5 min 312,909,000.000 Worst 5 min 1,642,380,000.000
Lunar environment, outside Earth’s
magnetosphere, worst-case scenarios

Device/day Lunar environment, outside Earth’s
magnetosphere, worst-case scenarios

Device/day

Worst week 166,712.000 Worst week 875,200.000
Worst day 910,207.000 Worst day 4,778,370.000
Worst 5 min 3,473,810.000 Worst 5 min 18,236,700.000
ISS environment, stormy solar conditions Device/day ISS environment, stormy solar conditions Device/day
Average 1,179.700 Average 6,192.300
Peak 2,232.800 Peak 11,721.700
ISS environment, quiet solar conditions Device/day ISS environment, quiet solar conditions Device/day
Average 29.046 Average 152.470
Peak 82.695 Peak 434.109
ISS environment, worst-case scenarios Device/day ISS environment, worst-case scenarios Device/day
Worst week 9,939.990 Worst week 52,182.500
Worst day 54,377.500 Worst day 285,468.000
Worst 5 min 207,490.000 Worst 5 min 1,089,270.000

6 Article in Advance / MAJOR ETAL.

D
ow

nl
oa

de
d 

by
 B

ro
ck

 L
aM

er
es

 o
n 

A
pr

il 
5,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
08

59
 



checkpoints play a vital role in the timing of PRs, two approaches to
planning checkpoints have to be considered by software developers.
The first approachwould be to space checkpoints over longperiods of
time, allowing for multiple PRs to complete before checking tile
outputs. The second approach would be to shorten the time between
checkpoints, thus reducing the amount of time for a faulty tile to
continue without repair. Though the former approach would perform
well in low-fault conditions, it is recommended that the latter
approach be taken so as to quickly assess and correct faults that

may occur in a tile, instead of letting errors accumulate between
spaced checkpoints.
The time needed to complete a full or a PR depends on the

frequency of the external monitoring device performing the bitstream
upload. Thus, the μ value of a slave serial configuration can be found
by running Vivado’s configuration time calculator tool. The slave
serial configuration time previously given assumed a 16 MHz serial
link from a microcontroller; however, this does not guarantee the
fastest possible configuration. Given a controller configuration fre-
quency of 100MHz, the configuration time drops to 39msminimum
and μ drops to 0.0039.As can be seen in Fig. 9, plotted by aMATLAB
script, the MTTF increases as μ decreases.
Of additional consideration is the improvement in reliability

between the 4MR system with best-performing μ and the simplex
system. This architecture exhibits an improvement percentage of
upward to 3567% of the simplex system in ISS-orbit and upward
to 9359% of the simplex system in lunar orbit.
Further analysis of this system will lead to the consideration of

single points of failure, specifically the voter and the data memory

Table 3 CREME96 modeling of radiation environments, 30% microprocessor derating

Essential bits analysis (2,793,730) Total bits analysis (14,663,584)

Lunar environment, average conditions Device/day Lunar environment, average conditions Device/day
Average 0.591 Average 3.101
Peak 1.639 Peak 8.603
Lunar environment, inside Earth’s
magnetosphere, worst-case scenarios

Device/day Lunar environment, inside Earth’s
magnetosphere, worst-case scenarios

Device/day

Worst week 50,008.800 Worst week 262,483.200
Worst day 273,035.400 Worst day 1,433,094.000
Worst 5 min 93,872,700.000 Worst 5 min 492,714,000.000
Lunar environment, outside Earth’s
magnetosphere, worst-case scenarios

Device/day Lunar environment, outside Earth’s
magnetosphere, worst-case scenarios

Device/day

Worst week 50,013.600 Worst week 262,560.000
Worst day 273,062.100 Worst day 1,433,511.000
Worst 5 min 1,042,143.000 Worst 5 min 5,471,010.000
ISS environment, stormy solar conditions Device/day ISS environment, stormy solar conditions Device/day
Average 353.910 Average 1,857.690
Peak 669.849 Peak 3,516.510
ISS environment, quiet solar conditions Device/day ISS environment, quiet solar conditions Device/day
Average 8.714 Average 45.741
Peak 24.809 Peak 130.233
ISS environment, worst-case scenarios Device/day ISS environment, worst-case scenarios Device/day
Worst week 2,981.997 Worst week 15,654.750
Worst day 16,313.250 Worst day 85,640.400
Worst 5 min 62,247.000 Worst 5 min 326,781.000

Fig. 8 MMTF versus fault rate for varying architectures.

Table 4 CREME96 modeling of radiation environments,

30% microprocessor de-rating

Architecture % Improvement over simplex system
ISS-orbit worst case Lunar-orbit worst case

TMR 4.7 4.9
TMR + repair 327 117
4MR 1556 327

Article in Advance / MAJOR ETAL. 7

D
ow

nl
oa

de
d 

by
 B

ro
ck

 L
aM

er
es

 o
n 

A
pr

il 
5,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
08

59
 



scrubber. Though these areas of the device are subject to SEUs, like
any other component in the FPGA, their relatively small footprints
reduce their probability of experiencing damage from faults. The
SEM will protect the configuration memory of these elements from
damage, but, otherwise, an error in their circuitry may require a full
reconfiguration. This could bemitigated through implementing these
elements on an external, radiation-hardened component, but such a
strategy would defeat the purpose of developing a COTS design.
Rather, the recommended approach would be to establish partially
reconfigurable sections of the device dedicated to each component
and to employ PR if damage is observed.
Finally, the possibility of tile desynchronization by a few clock

cycles, even after checkpoint synchronization occurs, can become a
point of concern in device operation. The choice to attempt synchro-
nization again to constrain these times remains valid, or to create a
voter that considers outputs across a wider range of clock cycles to
account for errors.

VII. Conclusions

The computer architecture presented in this paper, named RadPC,
demonstrates the ability to respond to faults induced by space radi-
ation. As many current radiation-fault mitigation strategies in space
mission computing systems have proven to be infeasible due to cost
and complexity, alternate methods to achieve radiation tolerance are
necessary. In addressing the impact of SEEs within the circuitry of
FPGA-based computers, several methods for mitigating their impact
on performance were discussed and implemented within the system.
A multiprocessor system inspired and adapted from the common
method of TMRwas implemented, with the ability to repair impacted
tiles and restore functionality. This capability is achieved using PR
and SEM to account for SEE-affected portions of the FPGA fabric.
Redundant memory devices, checkpoint flags, and a voter system
ensure processor tile synchronization. This systemwas run through a
Markov chain model to characterize its ability to maintain perfor-
mance despite radiation-induced faults. With expected radiation
strikes provided by a model output through CREME96, the design
demonstrates the ability to provide a feasible, low-cost, low-power,
COTS architecture to address radiation-induced faults reliably and
expediently.

Acknowledgments

This material is based upon work supported by NASA under
Grant/Contract/Agreement Nos. 80 MSFC20C0032, 80NSSC18
P2129, 80NSSC20 K0107, 80NSSC19M0037, 80NSSC18 K1671,

80NSSC17M0037, NNX16AI75A, NNX14AL03A, NNX13AR03A,
NNX12AM50G, NNX10AN91A, and NNX10AN32A.

References

[1] Barth, J. L., Dyer, C. S., and Stassinopoulos, E. G., “Space, Atmos-
pheric, and Terrestrial Radiation Environments,” IEEE Transactions on

Nuclear Science, Vol. 50, No. 3, 2003, pp. 466–482.
https://doi.org/10.1109/TNS.2003.813131

[2] Claeys, C.,RadiationEffects in Advanced SemiconductorMaterials and

Devices, Springer, Berlin, 2010, pp. 1–4, 181–183.
https://doi.org/10.1007/978-3-662-04974-7

[3] Adams, A., and Holmes-Siedle, L., Handbook of Radiation Effects,
Oxford Univ. Press, New York, 2004, pp. 4, 138–163.
https://doi.org/10.5860/CHOICE.31-5512

[4] Barnaby, H. J., “Total-Ionizing-Dose Effects in Modern CMOS Tech-
nologies,” IEEE Transactions on Nuclear Science, Vol. 53, No. 6, 2006,
pp. 3103–3121.
https://doi.org/10.1109/TNS.2006.885952

[5] Uzel, R., andÖzyildirim,A., “AStudyon theLocal ShieldingProtection
of Electronic Components in Space Radiation Environment,” 2017 8th
International Conference on Recent Advances in Space Technologies

(RAST), IEEE, New York, 2017, pp. 295–299.
https://doi.org/10.1109/RAST.2017.8003007

[6] Gambes, J. W., and Maki, G. K., “Rad-Tolerant Flight VLSI from
Commercial Foundries,” Proceedings of the 39th Midwest Symposium

onCircuits and Systems, Vol. 3, IEEE,NewYork, 1996, pp. 1227–1230.
https://doi.org/10.1109/MWSCAS.1996.593127

[7] Anelli, G., Campbell, M., Delmastro, M., Faccio, F., Floria, S., Giraldo,
A., Heijne, E., Jarron, P., Kloukinas, K., Marchioro, A., Moreira, P., and
Snoeys, W., “Radiation Tolerant VLSI Circuits in Standard Deep Sub-
micron CMOS Technologies for the LHC Experiments: Practical
Design Aspects,” IEEE Transactions on Nuclear Science, Vol. 46,
No. 6, 1999, pp. 1690–1696.
https://doi.org/10.1109/23.819140

[8] Yu-Lam, D., Lan, J., McMurchie, L., and Sechen, C., “SEE-Hardened-
by-Design Area-Efficient SRAMs,” 2005 IEEE Aerospace Conference,
IEEE, New York, 2005, pp. 1–7.
https://doi.org/10.1109/23.819140

[9] Makihara, A., Midorikawa, M., Yamaguchi, T., Iide, Y., Yokose, T.,
Tsuchiya, Y., Arimitsu, T., Asai, H., Shindou, H., Kuboyama, S., and
Matsuda, S., “Hardness-by-Design Approach for 0.15 /spl mu/m Fully
Depleted CMOS/SOI Digital Logic Devices with Enhanced SEU/SET
Immunity,” IEEE Transactions on Nuclear Science, Vol. 52, No. 6,
2005, pp. 2524–2530.
https://doi.org/10.1109/TNS.2005.860716

[10] Keys, A., Adams, J., Frazier, D., Patrick, M., Watson, M., Johnson, M.,
Cressler, J., and Kolawa, E., “Developments in Radiation-Hardened
Electronics Applicable to the Vision for Space Exploration,” AIAA

SPACE 2007 Conference and Exposition, AIAA Paper 2007-6269, 2012.
https://doi.org/10.2514/6.2007-6269

Fig. 9 MMTF versus fault rate for varying architectures, best-performing μ for 4MR system.

8 Article in Advance / MAJOR ETAL.

D
ow

nl
oa

de
d 

by
 B

ro
ck

 L
aM

er
es

 o
n 

A
pr

il 
5,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
08

59
 

https://doi.org/10.1109/TNS.2003.813131
https://doi.org/10.1109/TNS.2003.813131
https://doi.org/10.1109/TNS.2003.813131
https://doi.org/10.1109/TNS.2003.813131
https://doi.org/10.1109/TNS.2003.813131
https://doi.org/10.1007/978-3-662-04974-7
https://doi.org/10.1007/978-3-662-04974-7
https://doi.org/10.1007/978-3-662-04974-7
https://doi.org/10.5860/CHOICE.31-5512
https://doi.org/10.5860/CHOICE.31-5512
https://doi.org/10.5860/CHOICE.31-5512
https://doi.org/10.5860/CHOICE.31-5512
https://doi.org/10.1109/TNS.2006.885952
https://doi.org/10.1109/TNS.2006.885952
https://doi.org/10.1109/TNS.2006.885952
https://doi.org/10.1109/TNS.2006.885952
https://doi.org/10.1109/TNS.2006.885952
https://doi.org/10.1109/RAST.2017.8003007
https://doi.org/10.1109/RAST.2017.8003007
https://doi.org/10.1109/RAST.2017.8003007
https://doi.org/10.1109/RAST.2017.8003007
https://doi.org/10.1109/RAST.2017.8003007
https://doi.org/10.1109/MWSCAS.1996.593127
https://doi.org/10.1109/MWSCAS.1996.593127
https://doi.org/10.1109/MWSCAS.1996.593127
https://doi.org/10.1109/MWSCAS.1996.593127
https://doi.org/10.1109/MWSCAS.1996.593127
https://doi.org/10.1109/23.819140
https://doi.org/10.1109/23.819140
https://doi.org/10.1109/23.819140
https://doi.org/10.1109/23.819140
https://doi.org/10.1109/23.819140
https://doi.org/10.1109/23.819140
https://doi.org/10.1109/23.819140
https://doi.org/10.1109/23.819140
https://doi.org/10.1109/TNS.2005.860716
https://doi.org/10.1109/TNS.2005.860716
https://doi.org/10.1109/TNS.2005.860716
https://doi.org/10.1109/TNS.2005.860716
https://doi.org/10.1109/TNS.2005.860716
https://doi.org/10.2514/6.2007-6269
https://doi.org/10.2514/6.2007-6269
https://doi.org/10.2514/6.2007-6269
https://doi.org/10.2514/6.2007-6269


[11] Sterpone, L., and Violante, M., “Analysis of the Robustness of the TMR
Architecture in SRAM-Based FPGAs,” IEEE Transactions on Nuclear

Science, Vol. 52, No. 5, 2005, pp. 1545–1549.
https://doi.org/10.1109/TNS.2005.856543

[12] Garvie, M., and Thompson, A., “Scrubbing Away Transients and
Jiggling Around the Permanent: Long Survival of FPGA Systems
Through Evolutionary Self-Repair,” Proceedings of 10th IEEE

International On-Line Testing Symposium, IEEE, New York, 2004,
pp. 155–160.
https://doi.org/10.1109/OLT.2004.1319674

[13] Kao, C., “Benefits of Partial Reconfiguration,” Xcell Journal, Vol. 55,
Oct. 2005, pp. 65–67.

[14] Gauer, C., LaMeres, B. J., and Racek, D., “Spatial Avoidance of Hard-
ware Faults Using FPGA Partial Reconfiguration of Tile-Based Soft
Processors,” 2010 IEEEAerospaceConference, IEEE,NewYork, 2010,
pp. 1–11.
https://doi.org/10.1109/AERO.2010.5446663

[15] Julien, C. R., LaMeres, B. J., and Weber, R. J., “An FPGA-Based
Radiation Tolerant SmallSat Computer System,” 2017 IEEE Aerospace

Conference, IEEE, New York, 2017, pp. 1–13.
https://doi.org/10.1109/AERO.2017.7943634

[16] Hogan, J. A., Weber, R. J., and LaMeres, B. J., “Reliability Analysis of
Field-Programmable Gate-Array-Based Space Computer Architec-
tures,” Journal of Aerospace Information Systems, Vol. 14, No. 4,
2017, pp. 247–258.
https://doi.org/10.2514/1.I010481

[17] Soft Error Mitigation v4.1 Product Guide, Xilinx, 2018, https://www.
xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_
sem.pdf.

[18] Bates, T., and Bridges, C. P., “Single Event Mitigation for Xilinx 7-
Series FPGAs,” 2018 IEEE Aerospace Conference, IEEE, New York,
2018, pp. 1–12.
https://doi.org/10.1109/AERO.2018.8396520

[19] 7 Series FPGAs Overview (v2.6), Xilinx, 2012, https://www.xilinx
.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem
.pdf.

[20] Using aMicroprocessor to Configure 7 Series FPGAs via Slave Serial or
Slave SelectMAP Mode, Xilinx, 2012, https://www.xilinx.com/
support/documentation/application_notes/xapp583-fpga-configuration
.pdf.

[21] Vivado Design Suite TCL Command Reference Guide, Xilinx, 2014,
https://www.xilinx.com/support/documentation/application_notes/
xapp583-fpga-configuration.pdf.

[22] McMurtrey, D., Morgan, K. S., Pratt, B., and Wirthlin, M. J., “Estimat-
ing TMR Reliability on FPGAs Using Markov Models,” 2008.
https://doi.org/10.3923/ajsr.2017.128.138

[23] Weber, R. J., “Reconfigurable Hardware Accelerators for High Perfor-
mance Radiation Tolerant Computers,” Ph.D. Thesis, College of Engi-
neering, Montana State Univ., Bozeman, MT, 2014.

[24] Tylka,A. J., Adams, J. H., Boberg, P. R., Brownstein, B., Dietrich,W. F.,
Flueckiger, E. O., Petersen, E. L., Shea, M. A., Smart, D. F., and Smith,
E. C., “CREME96: A Revision of the Cosmic Ray Effects on Micro-
Electronics Code,” IEEE Transactions on Nuclear Science, Vol. 44,
No. 6, 1997, pp. 2150–2160.
https://doi.org/10.1109/23.659030

G. P. Brat
Associate Editor

Article in Advance / MAJOR ETAL. 9

D
ow

nl
oa

de
d 

by
 B

ro
ck

 L
aM

er
es

 o
n 

A
pr

il 
5,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
08

59
 

https://doi.org/10.1109/TNS.2005.856543
https://doi.org/10.1109/TNS.2005.856543
https://doi.org/10.1109/TNS.2005.856543
https://doi.org/10.1109/TNS.2005.856543
https://doi.org/10.1109/TNS.2005.856543
https://doi.org/10.1109/OLT.2004.1319674
https://doi.org/10.1109/OLT.2004.1319674
https://doi.org/10.1109/OLT.2004.1319674
https://doi.org/10.1109/OLT.2004.1319674
https://doi.org/10.1109/OLT.2004.1319674
https://doi.org/10.1109/AERO.2010.5446663
https://doi.org/10.1109/AERO.2010.5446663
https://doi.org/10.1109/AERO.2010.5446663
https://doi.org/10.1109/AERO.2010.5446663
https://doi.org/10.1109/AERO.2010.5446663
https://doi.org/10.1109/AERO.2017.7943634
https://doi.org/10.1109/AERO.2017.7943634
https://doi.org/10.1109/AERO.2017.7943634
https://doi.org/10.1109/AERO.2017.7943634
https://doi.org/10.1109/AERO.2017.7943634
https://doi.org/10.2514/1.I010481
https://doi.org/10.2514/1.I010481
https://doi.org/10.2514/1.I010481
https://doi.org/10.2514/1.I010481
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://doi.org/10.1109/AERO.2018.8396520
https://doi.org/10.1109/AERO.2018.8396520
https://doi.org/10.1109/AERO.2018.8396520
https://doi.org/10.1109/AERO.2018.8396520
https://doi.org/10.1109/AERO.2018.8396520
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp583-fpga-configuration.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp583-fpga-configuration.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp583-fpga-configuration.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp583-fpga-configuration.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp583-fpga-configuration.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp583-fpga-configuration.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp583-fpga-configuration.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp583-fpga-configuration.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp583-fpga-configuration.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp583-fpga-configuration.pdf
https://doi.org/10.3923/ajsr.2017.128.138
https://doi.org/10.3923/ajsr.2017.128.138
https://doi.org/10.3923/ajsr.2017.128.138
https://doi.org/10.3923/ajsr.2017.128.138
https://doi.org/10.3923/ajsr.2017.128.138
https://doi.org/10.3923/ajsr.2017.128.138
https://doi.org/10.1109/23.659030
https://doi.org/10.1109/23.659030
https://doi.org/10.1109/23.659030
https://doi.org/10.1109/23.659030

